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We consider a dielectric photonic crystal made of cylindrical holes in a high index matrix. We show that
a given finite size photonic crystal can mimic a homogeneous material whose permittivity and perme-
ability are negative. We pay attention to the limitation of the homogeneous medium model and the vital
role of the truncation of the crystal.
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A seminal paper by Pendry published in 2000 has
opened a new research line: the metamaterials [1]. Follow-
ing a work published in 1968 by Veselago, Pendry pro-
posed to build a lens using a slab of material whose per-
mittivities and permeability should be both equal to minus
one [1,2]. The tremendous result he obtained is that this
slab would act as a perfect lens, i.e., that the diffraction
limit would be overcome. Huge practical and theoretical
implications could be foreseen and there has been a lot of
debate about the possibility to obtain perfect focusing [3,4]
and also about the limits of actual devices [5].

Unfortunately, nature does not provide us with such a
material; thus, researchers have proposed to build a com-
posite material that would mimic its properties, i.e., a
metamaterial. Thanks to the "double C resonators" struc-
ture negative refraction has been demonstrated [6].

When visible light is considered, metals become lossy.
In order to overcome this difficulty, the use of purely di-
electric structures can be envisaged. Moreover, it has been
shown that losses will necessarily limit the performances
of a metamaterial lens [4]. However, it should be noticed
that recent results have shown the metallic device to be
relevant at optical wavelength [7].

Negative refraction using dielectric photonic crystal was
demonstrated before light was shed on metamaterials [8].
Yablonovitch and John have proposed photonic crystals
simultaneously, but with different aims [9,10]. Recently
some papers have shown that the richness of the dispersion
relation of Bloch modes propagating in photonic crystals
can give birth to several interesting effects such as super-
prism effect, self-guiding, or negative refraction [8,11–13].
It was consequently a natural following step to consider the
possibility of building lenses using negative refraction in
dielectric photonic crystals [14,15].

Several experimental papers have demonstrated nega-
tive refraction and even focusing effects generated by
dielectric photonic crystals [16–20]. However, though
the idea of an effective permeability of a dielectric material

is not new [21], the question of the determination of the
effective permittivity and permeability of a dielectric left-
handed metamaterial has been rarely addressed [14,22].
Our main objective in this Letter is to show that negative
effective permeability and permittivity can be defined
under certain conditions for a dielectric photonic crystal
that exhibits negative refraction. Especially, we show that,
by contrast with usual homogeneous materials, the effec-
tive permeability and permittivity strongly depend on the
boundary of the crystal.

Negative refraction in photonic crystals is the conse-
quence of the conservation of the tangential component of
the wave vector at the boundary of a slab of photonic
crystal and of specific features of the dispersion relation
of the Bloch modes [11]. Let us recall that the average
energy velocity ve is equal to the group velocity vg and is
given by ve � vg � gradk�!�, and thus is perpendicular to
the constant frequency dispersion diagram (i.e. the extrem-
ity of the possible Bloch wave vectors at a given fre-
quency). Thus, one can define an effective optical index,
whose meaning is that the mean energy propagation direc-
tion will be refracted at the boundary of the crystal follow-
ing a Snell-Descartes law with a negative index. Note that
this definition does not rely on any properties of the phase
velocity inside the crystal.

Some additional conditions should be added to this
definition. Indeed, in order to be able to use this definition
one should take care about the shape of the constant
frequency dispersion diagram. For a homogeneous iso-
tropic material with optical index n this diagram would
be a sphere of radius k � n�!=c� and, thus, so should be
the diagram of a metamaterial. Eventually, an ellipsoid
could be obtained if one wants to simulate an anisotropic
homogeneous material. Note that we assume also that only
one band exists at the frequency of interest. At last, the
analysis proposed in Ref. [11], for example, is valid only if
the slab of photonic crystal can be considered as a grating;
i.e., the photonic crystal truncation at its boundary with the
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external medium should be such that the interface is peri-
odic and moreover at the wavelength of interest only one
propagative order should exist.

For the sake of simplicity we will consider here a two-
dimensional (2D) photonic crystal and the electromagnetic
field is assumed to be invariant along the axis of the rods
(z axis). Furthermore, we assume also that the crystal is
made of vacuum cylinders with circular cross section
drilled in a dielectric matrix. The parameters have been
chosen from Ref. [23].

Figure 1 shows the dispersion relation of the Bloch
modes in the crystal for E k polarization (the electric field
is parallel to the cylinders) and H k polarization (the
magnetic field is parallel to the cylinders). In order to
find a wavelength at which the effective optical index
would be minus one, we should seek for a negative slope
of the dispersion relation and a constant frequency diagram
as close as possible to a circle with radius k0 � !=c �
2�=�0. The solid slanting right line passing through
point A in Fig. 1 represents the dispersion relation of plane
waves in vacuum. Thus, the intersection between this line
and the second band in E k polarization (point labeled A)
gives the frequency!0 of interest, since moreover it can be
verified (see the inset in Fig. 1) that the constant frequency
diagram at !0 is reasonably close to the circle with radius
k0, and thus all the required conditions in order to get an
effective optical index neff � �1 are fulfilled.

To validate our solution, we have computed the field
when a limited beam at frequency !0 illuminates the
structure (see Fig. 2). The calculations have been carried
out using the scattering matrix method (also called multi-
pole method or Rayleigh method) developed a few years
ago and recently extended to be able to cope with a limited
extent of the homogenous dielectric surrounding the rods
[24–26]. This method, whose origin can be found in the
work done by Rayleigh [27], is also known in solid-state
physics as the K. K. R. method [28,29]. As expected, the

beam is negatively refracted with an angle opposite to the
incidence angle showing the validity of our analysis.
Another feature should be noted: the transmitted energy
rate is relatively low; about 73% is reflected in normal
incidence.

Let us conjecture that this result can be interpreted as
follows: the propagation direction is given by the conser-
vation of the tangential component of the Bloch wave
vector, allowing us to define the effective optical index,
that is to say the product of the permittivity and the per-
meability. But, if one wants to define effective permittivity
"eff and permeability �eff , any combination with �eff �
n2

eff="eff will obviously be acceptable. However, the differ-
ent values lead to different surface impedances and thus to
different reflection coefficients. According to this model,
our interpretation is that in our case the photonic crystal
mimics a homogeneous material with�eff � 1="eff � �1.
Let us emphasize that a priori both "eff and �eff are
complex and, provided that their product is real, the mate-
rial is lossless. In the simplest case of 1D photonic crystals
it can be shown that both are real only when the elementary
cell has a top-down symmetry [30]. This emphasizes how
important the role of the interface is.

In order to check our hypothesis we achieved a numeri-
cal experiment. Is it possible to find the characteristics of
an external homogeneous medium in such a way that the
photonic crystal does not diffract the incident wave? We
consider the finite size photonic crystal identical to that of
Fig. 2, but surrounded by a homogeneous material with
�eff � 1="eff , both parameters being negative. Then, we
make the permittivity vary and look for a minimum of the
integral around the crystal of the difference between the
modulus of the total field when the crystal is enlighten by a
plane wave at the wavelength �0 and the modulus of the
incident field itself. Notice that using this procedure we
obtain a minimum for "eff � �5:7 and �eff � �1=5:7 �
�0:175 when the crystal is enlighten in normal incidence.
We have checked that with this symmetric elementary cell,
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FIG. 1 (color online). Dispersion relation of the Bloch modes
in a 2D hexagonal dielectric photonic crystal made of vacuum
cylindrical holes with radius r � 0:294 �m drilled in a dielec-
tric matrix with permittivity " � 12, and period a � 0:68 �m
(solid lines E k to the axis of the cylinders and dashed line H k ).
The solid slanting right line is the light line in vacuum given by
! � ck0. The inset shows the constant frequency diagram for
plane waves in vacuum and for the Bloch mode at the frequency
corresponding to the point labeled A on the dispersion relation.
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FIG. 2 (color online). Modulus of the electric field for a crystal
made of 364 cylindrical holes drilled in a dielectric material and
parameters identical to Fig. 1. The crystal is surrounded by
vacuum. The top and bottom boundaries of the crystal are chosen
right in between two successive rows of holes. The Gaussian
incident beam is polarized along the axis of the holes and its
width is 5 �m. Note that given our 2D problem the beam is
invariant along the axis of the holes. The angle of incidence is 0�

(left) or 30� (right) and the wavelength �0 � 2:02 �m. The
color scale of the field maps is kept identical throughout the
Letter.
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the minimum occurs for real values. Figure 3 shows the
corresponding map of the modulus of the electric field.

Notice that our determination of the effective permittiv-
ity and permeability values does not rely on any properties
of the field inside the crystal, except for the direction of
propagation of the energy, but depends on the field dif-
fracted by the crystal, that should vanish in order to have a
total field as close as possible to the incident one. Thus, the
effective properties are effective in the sense that the
crystal mimics a homogeneous material that would pro-
duce a similar diffracted field.

We have plotted in Fig. 4 the map of the modulus of the
electric field when the structure is surrounded by a homo-
geneous material with " � 5:7 and � � 0:175 (both posi-
tive), i.e., a material having the same impedance as in
Fig. 3. Indeed, at least if we restrict ourselves to the notion
of impedance, the couples (", �) and (�", ��) cannot be
distinguished since the impedance is given by � �������������������������
�0�=�"0"�

p
. Thus we expect to get the same amount of

reflected energy with both couples. Figure 4 shows that the
reflected field is weak, as the interference fringes between
the incident and reflected fields are hardly perceptible,
especially for normal incidence (the transmitted energy
rate is now equal to 98%). Note that the negative refraction
that occurs in Fig. 4 but not in Fig. 3 confirms the fact that
the effective parameters should be negative.

Some comments should be added. The idea of negative
refraction using photonic crystals is now well understood
and accepted, the notion of effective index (positive or
negative) has been clarified, but except few papers, to
the best of our knowledge, this is the first attempt to
clarify the notion of effective permittivity and permeability
in this case. In Ref. [14] the authors have proposed
homogenization-based arguments to remark that dielectric
photonic crystals can generate negative permeability ma-

terials at the boundary of a stop band. We propose here
evidence that indeed a photonic crystal can mimic a nega-
tive �eff and "eff material (at the same frequency), and
furthermore we will try to make clear the limits of the
concept of effective material for photonic crystals. Note
that in Ref. [22] a numerical procedure similar to ours has
been used to determine effective properties. However, the
authors of Ref. [22] have considered a priori that the values
of �eff and "eff are real without justification. More impor-
tant, in the following we will show that the values of �eff

and "eff depend on the cut of the finite size crystal (i.e.
where exactly the crystal is truncated within the elemen-
tary cell). This conclusion is in contradiction with the
model developed in Ref. [22] that suggests that the effec-
tive parameters could be deduced from the dispersion
relation only.

First of all, one should recall that one of the limits that
cannot be overcome is given by the characteristic size of
the inhomogeneities of the structure. As shown in Ref. [5]
it will necessarily limit the range of evanescent waves that
could participate in the process of imaging by any meta-
material. The second limitation of the model comes also
from the inhomogeneity: the surface impedance of the
crystal strongly depends on the position of the boundary
within the unit cell, and so will be the effective permittivity
and permeability. The crucial importance of the truncation
of the crystal has been emphasized recently. It conditions
the existence of surface modes, and plays an important role
in negative refraction [31].

In order to point out the influence of the truncation of the
crystal, we have repeated the procedure described above
but for a crystal truncated at the middle of the air holes. In
this case we have obtained significantly different values:
"eff � �9:0 and �eff � �1=9:0 � �0:11. This result
shows a very important point: the value of the effective
permittivity and permeability of a photonic crystal cannot
be defined as long as its boundary (and specially the way of
truncation of the elementary cells located on this bound-
ary) is not defined. Figure 5 shows that for the determined
parameters the reflected field is of the same order of
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FIG. 3 (color online). Identical to Fig. 2 but the crystal is
surrounded with a homogeneous medium whose permittivity is
" � "eff � �5:7 and permeability is � � �eff � �0:175.
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FIG. 4 (color online). Identical to Fig. 3 but the crystal is
surrounded with a homogeneous medium whose permittivity is
" � 5:7 and permeability is � � 0:175.
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FIG. 5 (color online). Identical to Fig. 3 but here the finite
crystal is cut in the middle of air holes (top and bottom). The
crystal is surrounded by a homogenous medium with "eff �
�9:0 and �eff � �1=9:0 � �0:11.
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magnitude as in the case of the truncation between the rods
but with a very different value of effective parameters.

Figure 6 shows a map of the modulus of the electric field
when a point source is placed above the slab of dielectric
material in a homogeneous material with " � 5:7 and� �
0:175. The structure considered here is identical to the one
of Fig. 4 (truncation of the crystal between two rows of
rods). Clearly a focusing of the transmitted field is ob-
tained. We can also evaluate the lateral size of the image.
We obtain a lateral size of about 0.66 �0 showing that a
slightly subwavelength focusing is attainable with our
parameters.

To summarize, we have shown that one can define
effective permittivity and permeability for dielectric pho-
tonic crystals. We have given necessary conditions and
some limitations of the effective homogeneous medium
model. It turns out that a dielectric photonic crystal can
mimic a material whose effective permittivity and perme-
ability are simultaneously negative. Nevertheless, we stress
that the underlain homogeneous medium model is only
based on the idea that a given object (made of a piece of
photonic crystal) would be able to produce a diffracted
field similar to that diffracted by the homogenous piece of
effective material. We have clearly shown that the inter-
faces play a vital role on the values of effective permittivity
and permeability. As a consequence, one cannot define any
effective properties as long as the truncation of the crystal
is not defined. Of course, a definition of effective parame-
ters lying on the dispersion relation only is impossible.

We have pointed out that despite being local permittivity
and permeability cannot be defined properly; it is possible
to define effective parameters based on the idea that the
crystal mimics an homogeneous material from the point of
view of the field outside the crystal. In some ways we
directly apply the definition of metamaterials, that is, a

composite material that mimics a homogeneous material
with some unusual properties.
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FIG. 6 (color online). Photonic crystal lens. Identical to Fig. 4
but the crystal is enlighten by a wire source located at x � 0 and
y � 5:3 �m.
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