
2526 J. Opt. Soc. Am. A/Vol. 11, No. 9/September 1994

Scattering by a random set of parallel cylinders
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A theory of scattering by a finite number of cylinders of arbitrary cross section is presented. This theory
is based on a self-consistent approach that identifies incident and scattered fields around each cylinder and
then uses the notion of a scattering matrix in order to get a linear system of equations. Special attention is
paid to the simplified case of a sparse distribution of small cylinders for low frequencies. Surprisingly, it is
found that the classical rules of homogenization must be modified in that case. The phenomenon of enhanced
backscattering of light is investigated from numerical data for a dense distribution of cylinders.

1. INTRODUCTION
The purpose of this paper is to present a theory of scatter-
ing by a finite set of parallel cylinders of arbitrary cross
section arbitrarily distributed in a given region of space
of cross section C. A rigorous self-consistent theory is
used. A numerical implementation is achieved for vari-
ous kinds of cylinder. Special attention is paid to the
case of a distribution of cylinders having transversal di-
mensions that are small with respect to the wavelength
of the light, for which case a simpler approximate theory
can be used.

The possibilities of the homogenization process for the
low-frequency range are investigated. From the numeri-
cal results it is shown that in general the classical rules
of homogenization no longer hold for the case of low fre-
quencies (when the size of C is much smaller than the
wavelength) for a sparse distribution of cylinders. The
correction to the classical rule is given and explained from
theoretical considerations.

The phenomenon of enhanced backscattering 1 is inves-
tigated from numerical data for a dense and random dis-
tribution of cylinders. The strong influence of the shape
of the cylinders on this phenomenon is studied numeri-
cally and explained from intuitive considerations.

2. PRESENTATION OF THE
THEORY AND NOTATION
We consider in Fig. 1 a Cartesian coordinate system of
axes xyz of origin 0, the x-y plane being the cross-
section plane of a set of N parallel cylinders of cross
sections C. and boundaries Sj (j = 1, 2, ... N) arbitrar-
ily placed in region C. Each of these cylinders has a
permittivity Sj= Vj

2
, Cj being included in a circle D of

center Oj and radius Rj. It is assumed that two ar-
bitrary circles Dj and D1 have no intersection. Let us
denote by D (of radius R) the smallest circle of center 0
including C. In the air a homogeneous plane wave of
wave vector k (k = kl = 27r/A) illuminates the cylin-
ders with an angle of incidence a with respect to the
x axis. For simplicity the theory will be described for an
s-polarized field incident upon metallic or dielectric (non-
magnetic) cylinders, with the electric field parallel to the

z axis, but generalization to p polarization and to mag-
netic or perfectly conducting materials does not present a
problem. With use of a time dependence in exp(-iwt),
the incident electric field is given by

EL = E'u, = exp[-ik(x cos a + y sin a)]u,. (1)

The scattered field Es is defined at any point in space as
the difference between the total and the incident fields E
and Ei (we define the scattered field everywhere for theo-
retical purposes, although its physical interpretation is
not clear inside the cylinders):

Es = E - Ei. (2)

3. RIGOROUS THEORY
The total electric field satisfies, in the sense of distribu-
tions, the Helmholtz equation

V2 E + k2 (M)E = 0, (3)

with

k2 (M) = k2
g(M) = k2

(4)

M being an arbitrary point in space of coordinates (x, y).
This Helmholtz equation may be rewritten in the form

V2 E + k2E = [k2
- k2(M)]E (5)

and, bearing in mind that the incident field satisfies the
homogeneous Helmholtz equation

V2E' + k2Ei = 0, (6)

we deduce by subtracting Eq. (6) from Eq. (5) that the
scattered field satisfies

V2ES + k2 Es = [k2 - k2(M)]E, (7)

which enables us to express the scattered field at any
point P of space outside the cylinders, using Green's
theorem:
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Incident

Field

bj'm = ik'(sj - 1) ff exp[-imOj(M)]

X Jm[krj(M)]E(M)dxdy. (14)

description of the problem and notation.

ES(P) - k2 ff Ho() (kPM)[1 - (M)]E(M)dxdy.

(8)

The integral on the right-hand side of Eq. (8) can be re-
stricted to the set of cylinders Cj since k2 - k2 (M) van-
ishes outside the cylinders. This allows us to write the
scattered field in the form of a sum of integrals on the
cylinders:

Es(P) ik 2(Sj - 1) ff Ho'1(kPM)E(M)dxdy.
j=1,2,...,N 4 c

(9)

By definition, the jth term of the summation will be called
the field scattered by the jth cylinder and denoted by EjS;
thus

Finally, insertion of the expression of Ejs provided by
Eq. (13) into Eq. (10) provides a modal expression of the
total scattered field at any point outside the cylinders:

VP outside the Dj,
+x0

ES(P)= E bj,.H.()[krj(P)]exp[imj(P)].
j=12 Nm= -x

(15)

It is of fundamental importance to note that the existence
of a modal expression of the field scattered by an arbitrary
cylinder provided by Eq. (13) is quite general and extends
to any kind of material (dielectric, metallic, magnetic, per-
fectly conducting, etc.), regardless of the incident polar-
ization (p or s). However, this remark does not hold
for Eq. (14). Since Eq. (13) is the basic equation of this
theory and since Eq. (14) will not be used in what follows,
it can be considered that what follows is quite general.

Equation (15) expresses the scattered field from the po-
lar coordinates of P in the N coordinate systems linked
to the cylinders. In order to obtain an expression of this
field in a unique system of coordinates, for instance, the
system linked to C1, we express the right-hand side of
Eq. (13) in the th coordinate system by using Graf's for-
mula and the notation of Fig. 2:

if r(P) r = 010j,

H(,1)[krj (P)]exp[(im~j (P)]
+x0

= exp[i(m - q)Oli]H,(2)(krli)Jq[kr(P)]exp[iq (P)]
q=-(

(16)

Es = ES
j=1,2,...,N

(10)

with

EjS(p) = ik 2(Ej- 1) ff H )(kPM)E(M)dxdy. (11)

In order to express ES in a simpler form, let us consider
in Fig. 2 the system of polar coordinates linked to the
jth cylinder, with origin Oj. In this system point P is
described by its polar angle Oj(P) and its distance r(P)
to Oj. Using Graf's formula 2 for the Hankel function,
if rj(M) c r(P)

+x0

Ho')(kPM) = exp[-imOj(M)]
m=-0

X Jm[krj(M)]Hl)[krj(P)]exp[im~j(P)], (12)

Eq. (11) yields

VP such that rj(P) Ž Rj,

+x0

EjS(P) = bj,mHml)[krj(P)]exp[imj(P)],
m=-x

(13)

with

0 x

Fig. 2. Notation used for a change of the coordinate system of
Bessel functions. The subscripts refer to the system of coordi-
nates linked to a given cylinder. See text for details.

2R

Fig. 1. General
text for details.

P
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in such a way that Eq. (13) becomes

VP such that rj(P) • rli - Rj,

+00 +00

Ejs(P) bj,m E exp[i(m - q)Olj]
m=-00 q=-c

X H0 -)m(krlj)Jq[krj(P)]exp[iqOl(P)]. (17)

Similarly, the incident field given by Eq. (1) can be writ-
ten in the form

E1(P) = exp(ik - OP) = exp[ik (1 + 01P)]

= exp[-ikri cos(a - 0')]

x exp{-ikr(P)cos[a - 0I(P)]}, (18)

and, using the classical formula

+00

exp(iz cos u) = E (i)nJ.(z)exp(inu), (19)
n=-x

we can deduce from Eq. (18) that, at any point P in space,

Ei(P) = exp[-ikrl cos(a - 01)] Y_ (i)nexp(-ina)
n=-oo,+x

(20)

Finally, by adding the expression of the incident field
given by Eq. (20), the expression of the field scattered
by the cylinders Cj with j 1 given by Eq. (17) and
the expression of the field scattered by C, given by
Eq. (13), we obtain a rigorous modal expansion of the field
around C,

if RI < r,(P) • min(rIj - Rj),
jol

E(P) = X a,,mJm[kr,(P)]exp[im0I(P)]

+ F_ bjmH)[kr(P)]exp[im01 (P)], (21)

with

located between Dj and the circle of center Oj passing
through the closest point of the other cylinders.3 The
authors of Ref. 3 have used this property to solve the
problem of scattering by a grating of circular cylinders
under some conditions. It will be shown further that
our method is more general. It is worth noting that the
same kind of formalism has been used by other authors
in the special case of circular cylinders.47 The concept
of the scattering matrix will allow us to generalize it to
arbitrary-shaped cylinders.

It is of fundamental importance to note that the two
series in the right-hand side of Eq. (21) are quite differ-
ent from a physical point of view. The first one, the co-
efficients of which are given by Eq. (22), represents the
locally incident field, viz., the sum of the actual incident
field and the field generated by the other cylinders in the
direction of the Ith cylinder, thus acting as secondary inci-
dent fields for this cylinder. On the other hand, the sec-
ond term is the field scattered by the Ith cylinder. It is
well known that the coefficients of the scattered field and
those of the locally incident field are linked by a matrix
relation depending on the parameters of the th cylinder
only,

6 = Sa, (26)

where S is an infinite square matrix. It is notewor-
thy that this definition of the scattering matrix is not
the usual one, since in general the field around the lth
cylinder is separated into incoming and outgoing fields
(with Hankel functions of the second and first kinds,
respectively). A straightforward calculation shows that
our S matrix is linearly linked to the classical one.

Equations (23) and (26) allow us to eliminate the
matrices ai, and, after multiplying Eq. (23) by S and
then using Eq. (26) to express the left-hand side, we
obtain

(27)b - X ST,jbj = SIQ,-
jol

This linear system of equations may be written in the form

al,m = (-i)mexp[-ikrl cos(a - 0') - ima]
+ 2j yj bjq exp[i(q - m)0lj]Hm,((krzj).

jol q=-oo+00

(22)

Denoting by i, and b, the infinite column matrix of com-
ponents am and bi,m, we may write Eq. (22) in the ma-
trix form

fil = Q + I TI'A' (23)
aol

with Q, the column matrix of mth element QI,m given by

Qz,m = (-i)mexp[-ikrl cos(a - 0) - ima]

I
KS2T2,1

t -S3T3,1
...

-ST, 2 -S1 T1 ,3 . ... 1 SQ1
I - S2T23 . * b2 S2Q2

-S3T3,2 I ... ... b3 = S3Q3 
... ... ... ... ...
... ... ... ... ... 

(28)

which is a linear system of equations, I being the infinite
unit matrix. If the square and column submatrices S,

(24)

and Tjj a square matrix of the (m, q)th element Tljm,q
given by

Tijmq = exp[i(q - m)0Ij]HmH)q(krj). (25)

Equation (21) states a well-known result, summarized
in Fig. 3: the field around Cj can be represented by a
Fourier-Bessel modal expansion in the dashed annulus

c7� 10
Fig. 3. Domain of validity of the Fourier-Bessel expansion of
the total field around one cylinder.
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Tjj, and bj are truncated in order to keep the indices m
and q between -M and +M in Eqs. (21) and (22), the
final size of the system to be inverted is N(2M + 1).

Finally, let us express the scattered field outside D
(thus at infinity) from the column matrices b1. With this
aim, let us consider the expression of the scattered field
outside the cylinders, given by Eq. (15). In order to ex-
press this scattered field in the system of coordinates xyz,
we once more use Grafts formula:

if r > ri,

Hmi[krj(P)]exp[imj(P)] = 2j exp[i(m - q)oj]
q=-o,+3

x Jq_(kr)H(l)(kr)exp(iq0), (29)

where r and are the polar coordinates of point P of space
in the xy system.

With use of Eq. (29), Eq. (15) becomes, outside D,

4. SIMPLIFIED METHOD FOR
LOW FREQUENCIES
A. Introduction
When the wavelength is large with respect to the size
of each cylinder, important simplifications can be intro-
duced into the rigorous theory that lead to a strong re-
duction of the size of the linear system to be inverted.
Indeed, it will be shown that, under these conditions and
for s polarization, the field scattered by each cylinder be-
comes isotropic, in such a way that the right-hand side of
Eq. (13) reduces to the first term of the series.

Furthermore, if the size of the set of cylinders is small
compared with the wavelength, the total field scattered by
the cylinders is isotropic, as well. Hence it seems worth-
while to find an equivalence between this set of cylinders
and a single homogeneous cylinder. This property will
be used in Subsection 5.C below in order to define a ho-
mogenization process.

ES(P)= i bqH(1)(kr)exp(iqt), (30)
q=-x,+

with

+x0

bq = E bjm exp[i(m - q)0j]Jq-(kri). (31)
j=l,N m=- 

At infinity the field can be expressed in a simpler way by
use of the asymptotic form of the Hankel function 2:

Hql'(kr) _ 2W exp i(kr - q - r (32)

and Eq. (30) yields

ES (p) g(O) exp(ikr)
E5(P~g(O (33

with

g() = -exp --i I7

X E bq exp(-iq I)exp(iqO).
q= _x,+x 

(34)

The intensity at infinity (or the bistatic differential cross
section) is defined by

B. Preliminary Result: Scattering from a Subset
of Cylinders in the Low-Frequency Domain
It is assumed that there exists a region C' C C whose size
is much smaller than the wavelength A, containing N'
cylinders (1 ' N' ' N). It is assumed that C' is included
in a circle D' of center O' and radius R' that contains the
N' cylinders and nothing else (Fig. 4).

According to Eq. (8), the field ES'(P) scattered by the
N' cylinders can be expressed in the form

Es'(P) = ff H0 '(kPM)[1 - e(M)]E(M)dxdy.

(37)

In order to show that the scattered field becomes isotropic
when kR' tends to zero, we consider a point P located at
a distance PO' >> R'. Noting (Fig. 4) that

PM = PO' + q(P, M),

with q(P, M) < R', we deduce that in Eq. (37) the
Hankel function can be expressed in the form

Ho(1)(kPM) = Ho1~)[kPO' + kq(P, M)]

H0 (kPO') - kq(P, M)Hj1 (kP0').

Thus Eq. (37) takes the form

Es'(P) = -- k 2)
4

(38)

(39)

a
(35)

b

and for lossless cylinders the energy balance criterion is
written as

f 2r g(6)12d0 + 2,hiA Re ex i -r g(a + T)] = 0.- (36)
lo [ (4 ):

We obtain Eq. (36), the so-called optical theorem, by writ-
ing that the flux of the total field on a circle of center 0
and infinite in radius is equal to zero, since there is no
loss of energy.8

fp

0

Fig. 4. Simplified method for low frequencies.
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with

I_ = H(i (kPO') ff [1 - (M)]E(M)dxdy, (39')

I2 = -Hi1 (kPO') ffC kq(P, M)[1 - (M)]E(M)dxdy.

(39',)

The integral on the right-hand side of Eq. (39') is inde-
pendent of P and is a priori different from zero. Its cal-
culation is straightforward as soon as the total field E(M)
is known inside C'. Assuming that the total field re-
mains square integrable, this integral tends to a finite
value when k tends to zero. In the same way, the inte-
gral on the right-hand side of Eq. (39") remains finite as
k tends to zero, and we deduce, taking into account the
behavior of the Hankel function when the argument tends
to zero, that the limit of the scattered field, when k tends
to zero, is given by

VP, if k - 0,

Es'(P) Ak 2 log(k) + k2 B(P), (40)

where A, coming from Eq. (39'), is a constant.
Thus, when k tends to zero, the leading term is the first

one. It is noteworthy that, because ES (P) tends to zero
with k, the limit of E(M) reduces to the local incident
field, viz., the sum of the incident plane wave and the
field scattered by the cylinders located outside C'.

This proof does not hold for p polarization, because
basic equation (3) must be replaced by a more complicated
one:

V2 H + k2 H = [dH/dn]6s, (41)

where H is the z component of the magnetic field and
[dH/dn]5s the symbol of a distributions having a sup-
port localized on S = UjSj, the set of boundaries of the
cylinders, and defined by

([dH/dn]8s, Sp) = f [dH/dn](M)(p(M)dl, (42)

Sp being an infinitely differentiable function of two vari-
ables with compact support,9 dl a differential element of
the curvilinear abscissa on S, and [dH/dn] the jump of
the normal derivative of H on S.

From Eq. (41) it can be deduced that

V2HS + k2Hs = [k2 - k2 (M)]H + [dH/dn]5s, (43)

which allows us to express the scattered field Hs at any
point P outside the cylinders:

Hs (P) =- i k2 ff H() (kPM)[1 - 9(M)]

X H(M)dxdy - i | H(1)(kPM) d (M)dl.

(44)

Now let us use Eq. (44) for the subset C' of C, with bound-
ary S'. Using relation (38), we obtain the field Hs'(P)
scattered by this subset by

Hs (P) = 4 H( kPO') || [1 - (M)]H(M)dxdy

4 Ho LIO) 5 dn d

+ - k Hi') (kPO') L q(P, M)

x [1 - (M)]H(M)dxdy

4 l ( )ils/q [ dH 1+ kHMRP ff q ,M)[ -dl.+-k JA ' dn (45)

This expression can be simplified if we note that

ff k2[1 - (M)]H(M)dxdy + f [d dl = 0. (46)

Indeed, inside each cylinder Cj (j E {1, ... , N'}), the
magnetic field satisfies, in the sense of the functions,

div(grad H) + k'sjH = 0, (47)

and, by integrating on Cj and using the theorem of diver-
gence, we obtain

d dl + k2 ff jHdxdy = 0, (48)

the normal derivative being taken inside the cylinder Cj,
with normal n oriented toward the exterior.

Noting that

dH dH
dn - dn+

we see from Eq. (48) that

d dl + k 2 Hdxdy = 0, (49)
Li dn+ X

and thus, by subtracting Eq. (48) from Eq. (49), that

[ (M)]dl + k2 ff (1 - ej)H(M)dxdy = 0. (50)

We obtain Eq. (46) by summing Eq. (50) over each value
of j 1, ... , N'

Finally, the two remaining integrals in Eq. (45) can
be simplified when PO' >> R', by use of an approximate
value of q(P, M).

Recalling that q(P, M) = PM - PO' and O'P >> O'M,
we obtain

O'P - O'M

in such a way that Eq. (45) yields

(')(kO'P),

where V is a vector independent of P:

V= ff k3[1 - (M)]iI(M)O'Mdxdy

+I k[ dH O'Mdl.

(51)

(52)

(53)
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Assuming that H and dH/dn remain square integrable
as k tends to zero, it can be shown that the first integral
in Eq. (53) behaves like k3 and the second one like k2

(because dH/dn, like dHi/dn, behaves like k).
Expressing the scattered field Hs'(P) as in Eq. (30), we

find that

Hs'(P) = i b' H.()(kr')exp(im0'), (54)
m= -s

and it can be deduced from relation (52) that this expan-
sion reduces to the terms m = +1, with

b1+1 = + 8 (V. ivy).

This system may be symmetrized by division of the jth
line by Sj,o,o.

The expression of the scattered field outside C is given
by Eqs. (30) and (31) being replaced by

bm = bj,o exp(-im0i)Jm(kr ).
j=l,N

(31')

Moreover, when the size of C is much smaller than A,
kri << 1, and thus the total scattered field reduces to the
zeroth term:

bo = b,o.
j=l,N(55)

C. Numerical Implementation of the Simplified Method
Here we restrict our study to s-polarized light, but this
simplified method could be extended to p polarization,
as well.

We use the results of Subsection 4.B, with a subset
C' reduced to each of the cylinders Cj, which requires
that the size of each cylinder be small with respect to the
wavelength.

Under these conditions the field scattered by each cylin-
der at infinity is isotropic, and Eq. (13) becomes,

if rj(P) >> Rj,

Ejs(P) bj,oH6 [krj(P)]. (13')

In the same way, the expression of the incident field on
the cylinder Cj can be restricted to the zeroth-order term,
and Eq. (20) becomes, in the vicinity of Cl,

EL(P) exp[-ikr' cos(a - 0)]. (20')

Finally, the field scattered by an arbitrary cylinder Cj
must be considered around Cl (1 # j) as a local incident
field. With our hypothesis, the expression of this field
becomes, in the vicinity of C,,

Ejs(P) bj,oH.(')(kr/l).

Under these conditions, the total field around C, can be
written as

E(P) = exp[-ikrl cos(a - 0')]

+ EI bj,oHo)(krli) + bi,oHo1)[kr,(P)] (21')
jul

in such a way that Eq. (23) becomes a scalar equation:

al = Ql,o + EI Tj,oobjoX, (23')
jol

and because Eq. (26) becomes scalar as well,

bo, = S,o,oal,*o. (26')

The linear system of equations [Eq. (27)] can be written
in the form

bl,o - Y: SSooTjyoobao=SooQ1,o. (27')
jol

Finally, in Eq. (28) all the square and column matrices
are replaced by scalar numbers. Thus we get a system
of N equations with N unknowns bo:

(31")

It turns out that the total scattered field is isotropic, a
result already predicted in Subsection 4.B.

5. NUMERICAL APPLICATION

A. Tests of Validity
The use of our formalism needs a prior solution of the
problem of scattering by a single cylinder. For cir-
cular cylinders the scattering matrices S, of Eq. (26)
are obtained from the classical method when the
Fourier-Bessel expansions of the fields inside and out-
side the cylinder are matched on the surface.8 For ar-
bitrary shapes a rigorous finite-element method on the
boundary based on an integral equations has been im-
plemented. Both methods provide very precise results
(generally to within 10-'). With use of the new formal-
ism for many cylinders, we have implemented numerous
classical tests of validity on the numerical results (conver-
gence of the results when the number 2M + 1 of terms in
the Fourier-Bessel expansions increases, energy balance
for lossless materials, reciprocity).

For example, Fig. 5(a) shows a scattering object made
of seven perfectly conducting cylinders of various shapes.
Figure 5(b) gives the intensity of the scattered field for
an s-polarized incident field with incidence angle vr/2
and wavelength A = 1 mm. This scattered intensity was
computed for three values of 2M + 1, between 0 = 00 and
O = 1800 (the region 180° < < 3600 has been removed
from the curve since the scattered intensity is very large
for 2700). A convergence is obtained above M = 9.
For M = 9 and M = 14 the energy balance criterion is
satisfied to within 10-4. The computation time on an
IBM RS/6000-560 computer with 30 MFlops was 25 s for
M = 9.

From these tests it turns out that the precision remains
nearly the same as for a single cylinder, but of course the
computation time increases with the number of cylinders
since the size of the linear system to be solved increases
with this number.

We compared the results of our theory with those
of other theories. Figure 6(b) shows the scattering dia-
gram of a set of two identical dielectric circular cylin-
ders [Fig. 6(a)] illuminated by an s-polarized light. This
curve was computed successively with our method and
the method of fictitious sources.1" The two curves are

(1) I
r-2,0,0Ho (kr 2 )

...

-S,o,oH(')(kr12) -S 1,ooH(')(kr13) *- - Si,o,oexp[-ikr' cos(a - 0')]
1 ... ... b2,0j S2,ooexp[-ikr2 cos(a - 0 2

)]j (28')

... ... ... ... ...

... ... ... ... ... _*- 
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(a) Incident
wave vector

i O

0 30 60 90 120 150 180

e
Fig. 5. Test of validity on a scattering object. (a) Scattering
object: the central circular cylinder has diameter A, and the
ellipses have large and small axes, of 2A and 2A/3, respectively.
The centers of the circle and of one ellipse are separated by 3A.
(b) Convergence of the intensity radiated by the scatterer shown
in (a).

identical, because the relative discrepancy is always less
than 107.

B. Phenomenon of Enhanced Backscattering
The phenomenon of enhanced backscattering by particles
or by random rough surfaces has been investigated both
theoretically and experimentally.12 '18

In Ref. 18 Greffet studied diffraction by a set of square
dielectric rods for s polarization. We performed calcula-
tions with similar data but replaced the square rods of
side A/10 with circular ones of diameter A/10. Our re-
sults are shown in Fig. 7. Our curves are very similar
to those of Greffet (Fig. 2 of Ref. 18), except for a scale
factor that is due to the difference between the scattering
objects and the wavelengths.

In the same paper,' 8 Greffet recalled previous results
obtained by Maradudin et al.16 and conjectured that the
enhanced backscattering phenomenon no longer holds for
p polarization with a low index value. We now show that
this prediction may be erroneous.

Figure 8(a) shows the intensity scattered by a set of
20 cylinders for p polarization. Obviously, a strong en-
hanced backscattering phenomenon is obtained, a fact
that contradicts the conjecture of Greffet.18 Since this
conjecture was deduced from numerical results obtained
by Maradudin et al.,16 we tried to check the conclusion of

these authors, as well. In Ref. 16 the scattering object is
a dielectric randomly rough surface with index 1.628. In
order to simulate this kind of scattering object, we consid-
ered a set of 20 circular cylinders of index 1.5 placed on
the same line, separated by random distances [Fig. 8(b)].
The peak at an angle of diffraction of 70° represents
the specular direction of reflection by a mirror on the
x axis, and the diffuse peak at 40° is the direction of
the first order that would be generated by a wire grating
of groove spacing 3A (average of the distance between two
consecutive cylinders). Obviously, the peak of enhanced
backscattering has disappeared, which confirms the con-
clusion of Maradudin et al.'6 To explain this surprising
difference between the two distributions of cylinders, we
can notice that in Fig. 8(a) each cylinder is coupled with
numerous other cylinders placed in the vicinity. On the
other hand, in Fig. 8(b) each scatterer is coupled with two
other scatterers placed in the vicinity, the other ones be-
ing masked in addition by a shadowing effect. The en-
hanced backscattering effect generated by the coupling
between cylinders is therefore much greater in Fig. 8(a).
This is all the more noticeable since the mean distance be-
tween two consecutive cylinders is equal to 3A in Fig. 8(b),
whereas the mean distance between two adjacent cylin-
ders in Fig. 8(a) reaches almost 5A.

Figure 9 shows that significant enhanced backscatter-
ing phenomena still appear for an index of 1.1 but disap-
pear completely for an index of 1.05.

In conclusion, it emerges that the conditions for observ-
ing enhanced backscattering for dielectric diffracting ob-
jects are difficult to outline. They depend not only on
the polarization and the indices but also on the geometric
distribution and the size of the cylinders.

(a) a =135'

0 90 180 270 360

Fig. 6. Comparison with another theory. (a) Scattering object:
two dielectric circular cylinders (index 1.5) with diameter
60 mm, distance between centers 90 mm, and s-polarized light.
(b) Scattered intensity versus diffraction angle for a wavelength
of 30 mm, incidence a = 1350, and s-polarized light.
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Fig. 10 than in Fig. 11. As a consequence, it can be con-
jectured that the phenomenon of enhanced backscatter-
ing generated by a random set of cylinders similar to that
of Fig. 11 should be stronger than when the cylinders are
those of Fig. 10. Indeed, contrary to what happens for
rods such as shown in Fig. 10, the origin of enhanced
backscattering, i.e., the multiscattering phenomenon, is
not challenged by a strong single scattering for rods such
as shown in Fig. 11.

Figures 12 and 13 fully confirm the above prediction.
Of course, this rule should not be considered a general
one, at least so long as it has not been checked by numer-
ous other calculations.

hV 
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C. Homogenization Process for Low Frequencies
From Section 4 we know that for s polarization the total
field scattered by the cylinders is isotropic, provided that
the size of the set of cylinders is small compared with
the wavelength. Hence it seems worthwhile to try to
find an equivalence between such a set of cylinders and
a single homogeneous cylinder. In other words, we will
try to define the homogenization process. The laws of

(a) 0
1.
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0.25-

0.0:
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9 0 a I . r I 1 8 .'

90 120 150 180

Fig. 7. Scattering by a set of cylinders. (a) 30 cylinders of
diameter A/10, randomly placed in a rectangular box; L = 0A,
h = 5A, s polarization. (b), (c) Scattered intensity D(O) cor-
responding to cylinders of indices v = 4 and v = 1.5, with
wavelength A = 1 mm. The results are averaged over 1000
realizations.

In Figs. 10-13 we show the influence on enhanced
backscattering of the scattering diagram of a single
diffracting cylinder.

Figure 10 gives the scattering cross section of a single
perfectly conducting square cylinder with one side lying
on the x axis; Fig. 11 shows the cross section of the same
cylinder, but the cylinder is rotated by 450 around the
z axis. The backscattered intensity is much greater in
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Fig. 8. Scattered intensity D(0) produced by a set of 20 cylin-
ders of diameter 1.2A and p polarization. The results are av-
eraged over 1000 realizations. Indices: v = 1.5, A = 1 mm.
(a) Cylinders randomly placed in a circular box of diameter
2R = 28A; angle of incidence, a = 90°. (b) Cylinders randomly
placed on the x axis. The distance between the centers of two
consecutive cylinders is a uniform random distribution between
1.2 and 4.8A. Angle of incidence, a = 1100.
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Fig. 9. Scattering by a set of 20 cylinders of diameter A, randomly placed in a circular box of diameter 2R = 28A, for p polarization,
a = 90°, and A = 30 mm. The results are averaged over 1000 realizations. (a) Scheme of the cylinders; (b), (c), (d) scattered intensity
D(O) corresponding to cylinders of indices v = 1.5, v = 1.1, and v = 1.05, respectively.

10- + I \ -10

5

0 90 180 270 360

Fig. 10. Scattered intensity of a single perfectly conducting
square cylinder of side 21 mm (one side lying on the x axis)
illuminated for s polarization, a = 900, and A = 30 mm. The
arrow indicates the backscattering direction.

homogenization are well known for the case in which
the size of the set of particles is large with respect to
the wavelength and for a high density of scatterers. We
will show theoretically that these laws must be corrected
at low frequencies in order for a boundary effect to be

taken into account. These theoretical predictions will
bechecked by numerical results.

We consider a set of N identical circular cylinders, with
a circular cross section of radius p (Vj, Rj = p) and a
permittivity E = P2. The cylinders are assumed to be
randomly positioned in a domain C included in a circular

0 90 180 270 360

0 90 180

Fig. 11. Same as for Fig. 10 but with
tated 450 with respect to the z axis.

270 360

the square cylinder ro-
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domain D of radius R (see Fig. 1), with R << A. The
light is s polarized. From Section 4 we know that the
scattered field outside D is given by

Es(P) = boHo')(kr) = ( E bjo)Hol'(kr). (56)
j=1,N

Our goal is to find the radius A and the permittivity
= 2 of an equivalent cylinder that gives the same

diffracted field as the set of cylinders. In other words,
the field scattered by this homogeneous single cylinder is
written as

ES(P) = boHo )(kr), (57)

and we seek R and E that realize bo = bo.
Of course, the solution of this problem is not unique.

In fact, there exists an infinity of homogeneous cylinders
satisfying this requirement. Let us consider the simplest
case, in which C and D are identical. The classical rule
of homogenization states that the radius of the equiva-
lent cylinder is the same as that of D and that its
permittivity £ is given by

0

400-

300-

'_

0
200-

100-

90 180
I 

270

I- 9 I 1r0 2 0TI
O 90 180 270

360
-

-400

( - 1)R 2
= ( - 1)Np2 . (58)

It will be shown below that for low frequencies this rule
must be corrected, for instance, by change of the actual
radius, R, to a new one, R.

First, let us recall that for s polarization the
amplitude bo scattered by a circular cylinder of radius R
and permittivity e, centered at the origin of coordinates
and illuminated by a plane wave of unit amplitude, is
given by

Ji(kA)Jo(kPR) - Jo(kR)J(kiR)

iH (kR)J1 (kiR) - Hj 1)(kR)J0(kiA)

It is convenient to write this expression as

-1
°-1 + iX

where

X -Yo(kA)J(kJA) - Y1 (kA)Jo(kiA)
J(kR)Jo(k VR) - PJo(kR)J1 (k vR)

Assuming that kR << 1, Eq. (61) yields

X = ___ - -- log(kR)

+ 1 - 4 + 4 log 2 1 + O(kA) 2 ,

(59)

(60)

(61)

(62)

-300 where y is the Euler constant.
Now we consider a set of N identical cylinders. Start-

-200 ing from Eq. (27'), denoting by S the identical values of
Slo,o and noting that

-100

360

Fig. 12. Scattered intensity produced by a set of 20 square
cylinders similar to the cylinder of Fig. 10 and randomly placed in
a circular box of diameter 2R = 28A. The results are averaged
over 1000 realizations.

Qj,o = exp[-ikrl cos(a - 0')] 1,

we get

b,,o - Y. STIjoobjo = S.
jo1

(63)

By adding the N equations ( E {1, ... , N}) and by sepa-
rating b into a mean value (bjo) and a deviation r1,
we get

0 30 60 90 120 150 180

0

0 30 60 90

Fig. 13. Same as for Fig. 12 but with
to the cylinder of Fig. 11.

120 150 180

square cylinders similar

N(bjo - S(b,o) Yi T,j,oo
l=1,N jl

-S Y. Y. 85jTj,o,o = NS,
I=1,N jl

and thus (blo) can be expressed by

(b,o) = S1 -DI (64)

with

D = N 5' Y- jT1'j'0'0'

D2= E 8T,j,o,o,
N l=l,N jl

D2= S 1j00

N l=1,N j1

It is noteworthy that D1 and D2 are corrections imposed
by the coupling between the cylinders, b, 0 = (bio) = S
representing the limit value obtained by neglect of the

Felbacq et al.
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coupling (the local incident field being thus reduced to
the incident plane wave).

With our assumption, i.e., a mean distance between
cylinders much greater than the radius of these cylinders,
these corrections are small in modulus with respect to
unity: b and (blo) are close to S, and 8j I << S. Not-
ing that

T,j,oo = Ho (kriJ) Ž-log(krl) + [1 +-(-log 2)]

(65)

with krji << 1, and remembering that 3j is a deviation
from a mean value, less than S in modulus, we see that

ID,1 << ID2 1.

Finally, neglecting D1 in Eq. (64) yields

(bo) =
S

1 - I I Tl,j,o,o
l=1,N jol

With the approximation of T,j,oo provided by rela-
tion (65), we get

The equivalence with a homogeneous cylinder is obtained
by equalization of the values of X and X in Eqs. (60) and
(68) and yields

1 1 (k)2] = N(s- 1) + (k)2]

1 [(kp)(kL / 2 )1-N
2-lg k R 

1 + 4 log 2 (
+ 8 1

(70)

Since kR and kp are small, the term 1/4 is negligible com-
pared with 1/(kR)2 and 1/(kp) 2 . Thus Eq. (70) becomes

- 1 = ( - 1)Np 1/1 + ( - 1)N(kp)2

P [ 1(p NL 1N) 1 - 1)] (71)

Remark: We can verify that this result agrees with
the results obtained in Subsection 4.B. Indeed, when k
tends to zero, Eq. (71) becomes

I E Tl,j,o,o
1 jol

= (N- 1+ -(y - log 2) + X log(kL )j,

where
IN(N- 1)

r = n1 rij|
i jil

Thus the value of bo = N(bl,o) can be written as

bo / 1 + ± 2i (N- i)
N N N

+ ~ ~ ~ ~
x (Y + logt 2 )

1
-1 + iX

where the value of Sloo = S can be deduced from Eqs. (60)
and (62):

1 = 1 + -4)(p- - 2 log(kp)
S ir(-- - 1)(kp)2 7r~I

- 1 = ( - 1)Np2 /R 2 ,

(66)

(72)

and the field diffracted by the set of cylinders is identical
to boH(1)(kr), with

1+o 

(67)

1
-1 + i[-4/ir(Z- - 1)(kR?)2]

i(E- 1)k2 rf 2? i(s - 1)k 2Nirp2

4
(73)

4

One can also obtain this result by using Eq. (37), replacing
H( (kPM) with Hol)(kr) and the total field E(M) with its
approximate value, which is none other than the incident
field and consequently is equal to unity since the set of
cylinders is located near the origin.

Let us come back to Eq. (71) and call a set of random
cylinders one realization. A tedious and long calculation
shows that the mean value of L over a great number of
realizations is equal to R exp(- 1/4). In these conditions
Eq. (71) simplifies to

- 1 = ( - 1)(Np2/R 2 )1/(1 + C), (74)

+ 1- 4 y+ 4 log 2 1)]
27r V(s - 1) 

which finally gives the value of X in Eq. (68):

X [ -4 _ - 2 log(kp)

- 4y + 4 log 2 1 
+ ~~ 2 (S - 1)]

2(N - e1) g 2 )
Nir Yo\2j

(69)
with

C - - 1)N(k p)2 log(PNRl1 ) (74')

Equation (74) gives the permittivity £ of the equivalent
cylinder as a function of its radius R as soon as the pa-
rameters (N, p, s, R) of the set of cylinders are known.
For a given wavelength this relation shows that there ex-
ists an infinity of homogeneous cylinders (, ) that are
equivalent to the initial set of cylinders. There exists a
value of R that is particularly interesting. Indeed, in the
case for which

Felbacq et al.
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Fig. 14. Homogenization of a set of five cylinders.

R = Ro= p NRB-VN

Eq. (74) becomes

- 1 = (E - 1)(Np 2/R 2).

Equation (76) is none other than the relation give]
the classical rule of homogenization, but it must be
phasized that now the radius of the homogeneous c;
der is given by Eq. (75) and thus differs from the ac
radius R of the set of cylinders.

In order to estimate the influence of the corre(
term C, let us consider the case of N = 5 circular cylin
of radius p = 5 um and conductivity o- = 106 -1 

randomly distributed in a circular domain of radius.
100 I.m, for a wavelength A = 30 mm and s polarizal
In Fig. 14 we have plotted the characteristics of the hc
geneous cylinder equivalent to this set of five cylinc
i.e., versus R, using successively Eqs. (74) (corre
permittivity) and Eq. (76) (classical permittivity).
these values the corrected permittivity is a com
number, whereas the classical permittivity is a pu
imaginary number. Of course, the two equations
the same permittivity for the particular value R = 1
54.90 m. But it can be noted that for different va
of the equivalent radius the curves differ significai
In particular, a naive use of the classical rules of
mogenization gives for an equivalent radius of 100
a permittivity = i22,500, whereas the corrected v
is = -6800 + i2300. From the preceding results
can conclude that

1. The homogenization process does not satisfy
classical law.

2. In the infinite set of solutions (, R) there exists
solution with a permittivity given by the classical rub
homogenization:

( - 1) 2
= ( - 1)Np 2

,

but the radius Ro of the equivalent homogeneous cylir
is less than the radius R of the domain containing the
tial set of cylinders. The corrective term C of Eqs.
likely reflects the influence of boundary effects (the c3
ders of C close to the boundary do not behave like

other ones). Of course, it can be noticed that, when
lo, the density of the cylinders increases (i.e., N increases),

the value of Ro tends toward R, which agrees with the
l0 classical rule.

The particular value R = Ro has interesting proper-
ties. When the cylinders are made with ohmic mate-

rials described by a conductivity a- and a permittivity
lo, s = 1 + i/soo0, Eqs. (74) show that the permittivity E of

the homogeneous equivalent cylinder has a frequency be-
O havior that differs from that of an ohmic material because

of the presence of k in the correction C. On the other
hand, if we choose the homogeneous equivalent cylinder

l0 with radius R0 , the equivalent cylinder behaves as an
ohmic material because Eq. (76) reduces to

= o(Np2 /A 2), (77)

(75) where & is linked to by

= 1 + i1 0w. (78)

(76) In other words, it is only for this particular value Ro
i b that we can replace the set of ohmic cylinders by a ho-

byem mogeneous ohmic cylinder with a conductivity given by
1m- Eq. (77), thus independent of the frequency (as long as we

byum- stay in the low-frequency domain). This result can bectual helpful for the study of such set of cylinders in a given

bandwidth.
,dve Finally, let us compare these theoretical predictions

erns, with the rigorous numerical results provided by our com-

R puter code.
o. Figure 15 shows the scattered intensity generated by

L Jon. two sets of five cylinders, each of these sets being identi-
dMO- cal to the set of Fig. 14. The distance between the cen-
lers, ters of the sets is equal to one wavelength, i.e., 30 mm.

cted The calculation was achieved on a single realization of the
For structure. The solid curve was computed with the actual

plex set of ten elementary cylinders, and the dashed curve was
rely computed by replacement of each group of five cylinders
give with the special homogeneous equivalent rod whose pa-

lues rameters are given by Fig. 14: R = Ro = pINRlI-N =
l4-1- fls54.90 jAm and e = i74,500. The dotted curve gives the
Itay.

'ho-

alue
we

the

one
.es of

ider
ini-
(74)
Ain-
the

0

0 90 180 270 360
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e
Fig. 15. Homogenization of two sets of five cylinders. Curves
are defined in text.
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intensity obtained by use of the classical rules of homoge-
nization [i.e., with E given by Eq. (72) and the same radius
R = R = 100 /um]. It was verified that one obtains a
much better agreement between the solid and the dashed
curves by averaging the scattered intensity (solid curve)
over many realizations.

6. CONCLUSION

A rigorous theory of scattering by N arbitrary-shaped
cylinders arbitrarily located in space has been described
and numerically implemented. Once the S matrix of
each cylinder is calculated precisely, this theory is able
to provide, by inversion of a linear system, with good
precision the intensity scattered by the set of cylinders.
In the low-frequency domain, considerable simplification
occurs, and the size of the linear system is drastically
reduced.

The theory is especially suitable for the study of the
phenomenon of enhanced backscattering by a set of
arbitrary-shaped random rods. We were able to show
that this phenomenon holds for p polarization when the
index of the cyliiders is low, in contrast to conjectures
of other authors. For low frequencies the computation
may be achieved for a large number of cylinders. In this
domain it has been shown that the classical rules of ho-
mogenization should be corrected in some cases, and the
corrections have been given.

Many other domains of investigation are currently
being studied, in particular for random structures. For
instance, studies of Anderson's localization of light by a
set of random cylinders are in progress.
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