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§ 1. Introduction

Electromagnetic and acoustic waves have taken an in-
creasing importance in modern technologies like elec-
tromagnetic and optical communications, imaging,
object and surface characterisation, electronic and op-
tical components and space astronomy. As a conse-
quence, the development of accurate tools devoted
to the numerical simulation of electromagnetic and
acoustic waves scattering has a vital importance. In
particular, the solution to problems of scattering from
a disordered or periodic set of objects or from rough
surfaces is necessary in the study of many phenom-
ena of modern physics like weak and strong local-
ization, or in many scientific and technological ar-
eas like sea or ground surface characterisation, pho-
tonic band structures, diffraction gratings and hetero-
geneous films. This chapter is devoted to the study of
this kind of structure in the frame of electromagnetic
scattering.

In many cases, one can consider that the waves
are monochromatic. Some specific methods like
finite-difference time-domain (FDTD) can be applied
to wide-band signals, but for linear materials, a

monochromatic approach of scattering provides the
solution to wide-band problems using Fourier trans-
form. For this reason, this chapter is restricted to
the case of monochromatic waves. We will concen-
trate on two-dimensional (2D) problems of scatter-
ing. These problems are much simpler than problems
of scattering from 3D objects but the methods that
will be presented can be extended to this more com-
plicated case. It must be noted that the solution to
2D problems of scattering is not academic: in prac-
tice, many scattering objects are nearly 2D.

From our experience, it turns out that the solu-
tion to a wide class of scattering problems cannot be
achieved from the use of a unique and universal nu-
merical tool. In general, a better way to deal with a
large class of problems is to have a set of numerical
programs available, each of them being well adapted
to a special kind of problem. In this chapter, some
of them will be described. They are characterised by
their robustness and precision, and they lead to the
solution of a linear system of equations.

Very often, the efficiency of a numerical method
for solving a scattering problem is closely linked to
the representation of the fields on adequate bases. It
allows a reduction of the size of the linear system to
be inverted, thus a reduction of the computation time
and memory storage. The fictitious sources method
is a typical example of this rule, where the structure
reduces to a single piecewise homogeneous scattering
object. Closely related to the integral method, it al-
lows one to escape from the problems encountered
with singularities of the kernels thanks to a judicious
representation of the fields from the use of fictitious
sources placed apart from the surface of the scatterer.
The precision of the results can be estimated very eas-
ily from a numerical test.

The notion of S matrix of a single scatterer enables
one to solve the problem of diffraction from an ar-
bitrary set of homogeneous objects through the use
of the S-matrix method. This method fully takes into
account the coupling between the objects from mul-
tiple scattering and can deal with a large number of
scattering objects.
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Finally, a solution to the more complex prob-
lem where the scattering objects are located below a
rough surface separating two dielectric materials is
presented. In that case, a hybrid method combin-
ing an integral theory for the rough surface, a ficti-
tious sources method (or a classical integral theory)
for each scatterer and an S-matrix method for the cou-
pling between the set of objects is described. A vital
factor of the efficiency of this method lies on the use
of an integral equation with only one unknown func-
tion. This kind of integral equation allows one to save
memory storage and thus to take into account a large
number of scatterers.

Through the whole chapter, an orthogonal coordi-
nate system with unit vectors x̂, ŷ, ẑ is used. In the case
of 2D problems, ẑ will give the invariance direction.
Time-harmonic fields are represented by complex vec-
tors using a time dependence in exp(−iωt). We denote
by ε0 and µ0 the permittivity and the permeability of
vacuum by k0 = 2π/λ0 = ω(ε0 µ0)1/2 the wave number
and by η0 = (µ0/ε0)1/2 the vacuum impedance. The
permeability is assumed to be µ0 everywhere (non-
magnetic materials).

§ 2. Method of Fictitious Sources

Presentation of the Method

The method of fictitious sources (MFS) is a versa-
tile and reliable method able to deal with many scat-
tering problems. It relies upon a simple idea: the
electromagnetic field in the various domains of the
diffracting structure is expressed as a combination of
fields radiated by adequate electromagnetic sources.
These sources have no physical existence, which is
why they are called “fictitious” sources located in ho-
mogeneous regions and not on the interfaces. In other
words, one can consider that they generate electro-
magnetic fields that faithfully map the actual field;
thus they form a convenient basis for this field. From
a numerical point of view, proper bases are those
capable of representing the solution with the fewest
number of functions. Obviously, the quality of the
bases is closely linked with the nature of the sources
and their location. The freedom in the choice of the
sources provides a great adaptability to various com-
plex problems.

The MFS has been developed in the Laboratoire
d’Optique Électromagnétique in the past decade, both
from theoretical and numerical points of view (Tayeb,
1990, 1994; Tayeb et al., 1991; Cadilhac and Petit,
1992; Zolla, 1993; Petit and Zolla, 1994; Zolla et al.,
1994; Zolla and Petit, 1996). Almost at the same time
and independently, two other groups have worked on
the same basic ideas (Leviatan and Boag, 1987; Boag

et al., 1988, 1989, 1993; Hafner 1990, 1995), but
their approaches are different from ours. In fact, one
of the first attempts at using this method is proba-
bly due to Kupradze (1967). Our approach relies on
unquestionable theorems of functional analysis. For
conciseness, this aspect is not developed here, but the
interested reader can refer to Tayeb (1990) for grat-
ings problems or Cadilhac and Petit (1992) for 3D
and cylindrical scatterers.

A Canonical Problem

In order to give a framework to the method, let us
consider a 3D diffraction problem by a bounded ho-
mogeneous object whose boundary is a closed surface
C (Fig. 1). We assume that C is of class C2, and we
denote by n̂ the unit vector of the outward normal.
Note that the hypothesis of C2 surfaces is used to es-
tablish some mathematical properties (completeness
of bases), but numerically the method still works if
C is piecewise twice differentiable. We call Ω1 (resp.
Ω2) the exterior (resp. interior) of C. The domain Ω1
(resp. Ω2) is filled with a material of permittivity ε1
(resp. ε2) that is positive (resp. complex with positive
imaginary part). The object is illuminated by a known
incident field Finc = (Einc, Hinc), and we look for the
total field F = (E, H). Here, F and Finc are short no-
tations for the components of both electric and mag-
netic fields. From the Stratton–Chu formulae (Martin
and Ola, 1993), it turns out that the electromagnetic
field at any point can be deduced from the values of
n̂×E and n̂×H on C. That is why it is convenient to
represent the field by the couple Φ of vector functions
defined on C, which is the unknown of the problem

Φ = (n̂×E, n̂×η0H). (1)

In the same way, the incident field can be represented
by the couple of functions Φinc defined on C:

Φinc = (n̂×Einc, n̂×η0Hinc). (2)

We will also make use of the scattered field Fsc, defined
as the difference between the actual total field and the
incident field:

Fsc = F−F inc. (3)

The problem is to find the total field F such that:
(a) the scattered field Fsc satisfies Maxwell’s equa-

tions in Ω1 and a radiation condition at infinity,
(b) the total field F satisfies Maxwell’s equations in

Ω2 and
(c) the boundary conditions on the surface C of the

scatterer are fulfilled.
Let us consider sources S1, n (n = 1, 2, . . . , N) placed
in Ω2 and that radiate fields F1, n = (E1, n, H1, n) in the
whole space supposed to be filled with the material of
permittivity ε1. Note that since the sources are placed
in Ω2, F1, n has no singularity in Ω1, and F1, n verifies
condition (a) above. A linear combination ∑n c1, nF1, n
of such fields will also fulfil condition (a) and, if c1, n
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are well chosen, can be regarded as an approxima-
tion for Fsc in Ω1. In the same way, we consider
sources S2, n placed in Ω1, and radiating fields F2, n in
the whole space supposed to be filled with the material
of permittivity ε2. A linear combination ∑n c2, nF2, n
of such fields fulfils condition (b) and, if c2, n are well
chosen, can be regarded as an approximation for F in
Ω2. Denoting by Φ1, n and Φ2, n the boundary values
of the fields F1, n and F2, n on C, the continuity of the
tangential components of the total field on C (condi-
tion (c)) reduces to

Φinc +∑
n

c1, nΦ1, n −∑
n

c2, nΦ2, n = 0. (4)

It is possible to define adequate vector spaces for the
mathematical objects Φ, Φinc, Φ1, n and Φ2, n. From
this point of view, the equation above may be under-
stood as the decomposition of Φ on two different total
families (bases) Φ1, n and Φ2, n according to

Φ = Φinc + lim
N→∞

N

∑
n=1

c1, n(N)Φ1, n

= lim
N→∞

N

∑
n=1

c2, n(N)Φ2, n. (5)

The convergence notion in Eq. (5) is related to the
scalar product (thus to the norm) defined in these
vector spaces. Without going into detail, it is im-
portant to retain that the norm involves surface inte-
grals on C of the tangential components of the fields
Finc, F1, n, F2, n (i.e., Φinc, Φ1, n, Φ2, n) and of their sur-
face divergence on C.

In the numerical implementation, the set of sources
will be finite, and the associated families will not be
total, which means that Eq. (4) cannot be exactly ful-
filled. For a given finite number N of sources, the aim

Figure 1 The scatterer is the greyed region with surface C,
interior Ω2, and exterior Ω1. The general idea is to express the
scattered field Fsc in Ω1 as a combination of fields radiated by
sources lying in Ω2, and the total field F in Ω2 as a combination
of fields radiated by sources lying in Ω1.

is to determine the coefficients c1, n and c2, n (depend-
ing on N) that give the following norm its minimum
value ∆N:

∆N = min
∥

∥

∥

∥

Φinc + ∑
n=1, N

c1, n(N)Φ1, n

− ∑
n=1, N

c2, n(N)Φ2, n

∥

∥

∥

∥

. (6)

Let us provide some remarks about the choice of this
norm and the way of solving the problem.

• In some works (Leviatan and Boag, 1987;
Boag et al., 1988, 1989), the problem is
solved from Eq. (4) with the help of a
point matching method by enforcing the
boundary condition (c) at some sampling
points on C. With a convenient choice of
the number of these points (one should get
a linear system with as many unknowns
c1, n and c2, n as equations), it is possible
to fulfil exactly the boundary condition at
these points. But the boundary condition
may be badly fulfilled between them, and
strong oscillations of the left-hand side
of (4) can be observed, which is why we
suggest the improvement described in the
next paragraph.

• If a least-squares algorithm is used in or-
der to minimise the norm (6), the num-
ber of sampling points on C can be in-
creased independently of the number N
of sources. Compared with the preceding
method, we obtain a better accuracy for
the same computation time.

• Keeping in the norm not only the tan-
gential components of the fields but also
their tangential derivatives (coming from
the surface divergence contribution to the
scalar product), the tangential variations
are minimised as well, which ensures that
the solution will not present strong and
spurious oscillations between the sam-
pling points. In fact, our numerical ex-
periments have shown that these tangen-
tial derivative terms in the norm are use-
less in most problems, and can often be
neglected.

• The least-squares minimisation process
has another interesting feature. The nor-
malised error ∆̃N = ∆N/||Φinc|| expresses
the accuracy in the boundary condition (c)
and provides a good criterion on the pre-
cision of the solution. This feature is very
useful from a practical point of view and
enables one to avoid time-consuming con-
vergence tests.
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As soon as the best coefficients c1, n and c2, n are ob-
tained, the field in each region is given by

Fsc ≈ ∑
n=1, N

c1, nF1, n in Ω1, (7)

F ≈ ∑
n=1, N

c2, nF2, n in Ω2. (8)

The case of an infinitely conducting body can be
treated in the same way. Obviously, coefficients c2, n
vanish, condition (b) is cancelled and condition (c) is
replaced by the vanishing of the tangential compo-
nents of the electric field on C. The scattered field is
obtained by minimising on C the norm

∥

∥

∥n̂×Einc + ∑
n=1, N

c1, n(N)n̂×E1, n

∥

∥

∥.

Fictitious Sources and Basis Functions

The choice of the sources has a vital influence on the
performance of the MFS. The Israeli group (Leviatan
and Boag, 1987; Boag et al., 1988, 1989, 1993) uses
patch-currents (3D problems) or strip-currents (2D
problems), whereas multipoles are used in Hafner’s
work (1990, 1995). In our studies, we have focussed
on 2D problems: diffraction by a rod (or a set of
rods), and diffraction by a grating. For each of these
problems, we have tested two kinds of sources for
which we have demonstrated the completeness of the
associated bases Φ1, n and Φ2, n. These two kinds of
sources are called “wire sources” or “sheet sources”,
and are described in the following section. Both pro-
vide reliable numerical solutions.

Cylindrical and Bounded Scatterers

Presentation of the Problem In this section, the scat-
terer is a rod of infinite length or a set of such rods
(Fig. 2). The extension of the theory to problems
with more than one scatterer requires some mathe-
matical prerequisites, but from a numerical point of
view, this extension is straightforward. The total field
in each bounded medium is represented as a combina-
tion of fields radiated by sources placed outside this
medium. The same remark holds for the scattered
field in the unbounded medium. The boundary con-
ditions are matched on the discontinuity surfaces by
mean of a least-squares minimisation. More details
and examples on this subject can be found in Zolla et
al. (1994).

For the sake of simplicity, we consider the diffrac-
tion by one homogeneous rod in a classical 2D (z-
independent) problem where the incident field is also
z-independent (for conical diffraction see Petit and
Zolla (1994)). In that case, the problem reduces to
two independent problems: the s-polarisation case
where the electric field is parallel to the z axis, and the
p-polarisation case where the magnetic field is paral-

lel to the z axis. Each of these cases leads to a scalar
problem where the unknown u is the z component of
either E (s polarisation) or H (p-polarisation):

u =
{

Ez in s−polarisation

Hz in p−polarisation.
(9)

Choice of the Wire Sources and Solution of the Prob-
lem We first focus on the determination of the basis
elements Φ1, n. According to §2.2, the sources S1, n
are placed in Ω2 and radiate in the whole space filled
with a material of permittivity ε1. Let C1 be a closed
curve inside C (see Fig. 1, assuming now that it is
related to a 2D problem), and r1, n be the vector rep-
resentation of a point on this curve. Denoting by νj

the optical index filling Ωj, εj = νj
2 the relative permit-

tivity and kj = k0νj the wavenumber, the unique solu-
tion F1, n(x, y) satisfying a radiation condition of the
equation

∆F1, n +k2
1F1, n = 4iδ(r− r1, n) (10)

is the Hankel function

F1, n(x, y) = H(1)
0

(

k1
∥

∥r− r1, n
∥

∥

)

. (11)

The source S1, n (right-hand side of Eq. (10)) can be
interpreted as a wire antenna located at r1, n, and we
call it a “wire source”. According to (1), the basis

Figure 2 Three different cross sections in the case of two rods.
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element Φ1, n contains the values on C of the tangen-
tial field components and reduces here to a couple of
scalar functions defined on C, the other components
being equal to 0,

Φ1, n =
(

F1, n,
i

k0
p1 DF1, n

)

(12)

where DF1, n stands for the normal derivative of F1, n
on C , and pj is a polarisation dependent constant:

pj =
{

1 for s−polarisation

1/εj for p−polarisation.
(13)

The basis elements Φ2, n are constructed in the same
way, but the sources S2, n are now located at r2, n on a
closed curve C2 surrounding C :

F2, n(x, y) = H(1)
0

(

k2
∥

∥r− r2, n
∥

∥

)

, (14)

Φ2, n =
(

F2, n,
i

k0
p2 DF2, n

)

. (15)

The last problem is to determine an optimal location
for the sources. Although it is proved (Cadilhac and
Petit, 1992) that the solution converges towards the
exact one when the number N of sources increases, it
is important to place the sources in such a way that
this convergence is fast. There is no absolute rule,
but from our numerical experiments, good results are
generally obtained when the distance between adjoin-
ing sources is about λ/10, as well as the distance from
the sources to the surface C. It is generally advis-
able to increase the density of sources near the regions
where the radius of curvature of C is smaller.

In this case, the scalar product between two cou-
ples Φ = (u, v) and Φ′ = (u′, v′) is

(Φ
∣

∣Φ′ ) =
∫

C
(uū′ + ∂tu∂tū′ +vv̄′)d ,̀ (16)

where ∂t stands for the tangential derivative on C ,
and ` is the curvilinear abscissa. As suggested in §2.2,
some liberties can be taken in the numerical imple-
mentation, and the term ∂tu∂tū′ can be suppressed
without drawbacks.

The solving of the least-squares problem (6) gives
the coefficients c1, n and c2, n, and thus the field can be
computed everywhere using (7) and (8).

Sheet Sources These sources can be an alternative to
the previous sources, where the basis functions Φ1, n
are built from the solution satisfying a radiation con-
dition of

∆F1, n +k2
1 F1, n = f1, n δC1. (17)

In our numerical works, the source S1, n repre-
sented by the right-hand side of (17), whose sup-
port is C1, is chosen by setting f1, n( 1̀) = f1, n(M1)
= exp(2iπ p 1̀/L1), where 1̀ is the curvilinear ab-
scissa at a point M1 on C1, L1 is the perimeter of

C1, and the integer p = n−P−1 varies from −P to +P
when n goes from 1 to N = 2P+1. It can be shown
(Cadilhac and Petit, 1992) that other sets of functions
f1, n can be used, provided that they form a total fam-
ily L2(C1) . The solution F1, n(x, y) = F1, n(M) is the
convolution product

F1, n(M) =
1
4i

∫

C1

f1, n(M1)H(1)
0

(

k1MM1
)

dM1. (18)

The basis function Φ1, n is still obtained by (12). The
functions Φ2, n are constructed in the same way, using
sources S2, n = f2, nδC2 located on C2.

At a first glance, it could be thought that these
sources require a greater numerical effort than the
wire sources. In fact, using Gauss–Legendre quadra-
ture to compute the convolution products, it comes
out that the computation time remains on the same
order, specially when the objects have smooth bound-
aries.

S Matrix It is often useful to characterise the
diffraction properties of the rod by a scattering matrix
S. For this purpose, we consider a circle D with radius
R containing the entire rod (Fig. 3). Outside this cir-
cle, the z component u of the electromagnetic field sat-
isfies the Helmholtz equation ∆u+k1

2u = 0, and thus
can be expanded in Fourier–Bessel series:

u(P) =
+∞
∑

n=−∞

[

anJn(k1r) +bnH(1)
n (k1r)

]

exp(inθ). (19)

In this series, the series with Hankel functions rep-
resents the field scattered by the rod, whereas the se-
ries with Bessel functions represents the incident field.
Denoting by a and b the columns whose elements
are a and bn, the S matrix links the incident and the
diffracted field by

b = S a. (20)

In order to compute a truncated S matrix with rank
2M+1, we consider 2M+1 incident fields such as
an = δm, n :

for m = −M, M, uinc
m (P) = Jm(k1r)exp(imθ), (21)

For each value of m, the diffraction problem is solved,
and the scattered field usc

m(R, θ) = ∑+∞
n=−∞ bm, nH(1)

n

(k1R)exp(inθ) is calculated on the circle D. A fast
Fourier transform of this θ-periodic function gives its
2M + 1 central Fourier coefficients bm, nH(1)

n (k1R), and
thus the bm, n (for n = −M, M), which are nothing but
the mth column of the S matrix.

Numerical Example Let us consider (Fig. 4) a rod
whose cross section is defined by the parametric equa-
tion x(t) = −0.5+cos t+cos(2t), y(t) = sin t +sin(2t)/4.
We place N wire sources on each profile C1 and C2,
and 2N sample points on C (these points are used
in the numerical computation of the norm based on
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Eq. (16)). This rod of index ν2 = 1.5 lies in vac-
uum (ν1 = 1) and is illuminated with an incidence
Θinc = 50◦ by a plane wave with wavelength λ0 = 1.
Figure 5 gives the intensity scattered at infinity in the
direction θ (this function D(θ) is precisely defined by
Eq. (54)).

Gratings The MFS applies to diffraction gratings
problems with very little changes. In the case of 1D
gratings (we use the widespread notation that denotes
by 1D grating or 1D rough surface a 2D object invari-
ant towards the z direction) illuminated by a plane
wave, the wire sources are replaced by a periodic dis-
tribution of wire sources with phase shifts related to
the grating period and to the incident wave. The fields
F1, n and F2, n are nothing but the well known Green’s
functions for gratings. More details can be found in
Tayeb (1994), including hints for the computation of
Green’s function and several numerical examples.

In conclusion, the MFS can deal efficiently with
many kinds of structures, including complex profile
shapes. It is not plagued by the singularities prob-
lems encountered with classical integral methods, nor
by the problems arising with integral methods in the
case of objects covered with very thin layers (espe-
cially in the case of interpenetrating profiles, when it
is not possible to get a closed form expansion of the
fields between the layers), since only the free space
Green’s function (or the grating Green’s function in
case of periodic structures) is required. In our opin-
ion, it is interesting from many points of view:

• Although its theoretical justification is
based on difficult problems of functional

Figure 3 Outside the circle D, the field components expand in
Fourier–Bessel series.

Figure 4 Cross section of the rod and the two sets of wire
sources (N= 80).

Figure 5 Intensity at infinity for both polarisations.

analysis, its numerical implementation
does not need solid mathematical back-
ground.

• The method includes the possibility of
checking the accuracy of the results by
means of the normalised error ∆̃N.

• Many adjustable parameters are avail-
able. For instance, we can choose the kind
and the location of the fictitious sources,
i.e., we can choose the basis functions for
the representation of the fields.

This last feature makes the method powerful, but
this freedom also leads to embarrassing choices. Ba-
sic rules can be picked out in order to automate the
choice of the sources, and some work has been done
in our laboratory along this line with wire sources.
Without doubt, the performances of the MFS could
be enhanced by the combination of various kinds of
sources.
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§ 3. S-Matrix Method for Scattering
by a Set of Bounded Objects

A theory of scattering by a finite set of diffracting ob-
jects arbitrarily distributed in a given region of space
is presented in this section. This rigorous theory as-
sumes a prior calculation of the scattering matrix of
each object and, after a full handling of the coupling
phenomena, leads to the inversion of a linear system
of equations. In the following, it will be called the
“S-matrix method”. Even though a pioneering the-
oretical work in that direction was achieved in elec-
trostatics by Lord Rayleigh (1892) at the end of 19th
century, it can be considered that the formalism de-
scribed in this paper has been fully developed since
the end of the 1980s by different groups working in-
dependently (Youssif and Köhler, 1988; Chew et al.,
1992; Elsherbeni and Kishk, 1992; Felbacq et al.,
1994; Nicorovici et al., 1995; Vlassis et al., 1996; De-
fos du Rau, 1997).

The published studies deal with 2D or 3D objects,
arbitrary in shape or having simple geometries (circu-
lar cylinders or spheres), placed periodically or ran-
domly in space, perfectly conducting or dielectric.
Sometimes, the solution of the problem is carried out
by a direct handling of all the scatterers and some-
times by increasing the number of the objects progres-
sively through a recursive algorithm, but the basic fea-
tures of the formalism remain similar. The first part of
the section describes the theoretical approach where
the objects are cylinders of arbitrary cross sections,
followed by validation of the numerical implementa-
tion. Finally, a numerical application to the calcu-
lation of the transmission of light by a 2D photonic
crystal will be shown.

Theory

Figure 6 shows the cross-section plane of a set of N
parallel cylinders of boundaries Cj(j = 1, 2, ..., N) and
interior domain Ωj lying in vacuum. In the following

Figure 6 Description of the scattering problem and notations

and for the sake of simplicity, the cylinders are num-
bered from 1 to N, as opposed to the notations of §2.
Each of these cylinders has a permittivity εj = νj

2, Cj
being included in a circle Dj of centre Oj and radius
Rj. It is assumed that two arbitrary circles Dj and D`

have no intersection. For the sake of simplicity, the
theory will be described for an s-polarised field inci-
dent upon metallic or dielectric (nonmagnetic) cylin-
ders, with the electric field parallel to the z axis, but
the generalisation to p-polarisation and to magnetic
or perfectly conducting materials does not present any
difficulty.

The incident electric field is given by

Einc = Eincẑ (22)

with

Einc = exp(ik0(xsinΘinc−ycosΘinc)). (23)

The component on the z axis of the total elec-
tric field satisfies, in the sense of distributions, the
Helmholtz equation

∆E + k̃2(M)E = 0 (24)

with

k̃2(M) = k2
0ε̃(M) =

{

k2
0εj if M ∈ Ωj (j = 1, 2, ..., N)

k2
0 if M /∈ Ωj (j = 1, 2, ..., N),

(25)

M being an arbitrary point in the space of coordinates
(x, y).

Let us rewrite this Helmholtz equation in the form

∆E +k2
0E =

(

k2
0 − k̃2(M)

)

E. (26)

Bearing in mind that the incident field satisfies the
Helmholtz equation ∆Einc +k2

0Einc = 0, it can be de-
rived from Eq. (26) that the scattered field Esc, de-
fined at any point of space as the difference between
the total and incident fields, satisfies the equation

∆Esc +k2
0Esc =

(

k2
0 − k̃2(M)

)

E. (27)

Hence, the scattered field at any point P of space out-
side the cylinders can be expressed using Green’s the-
orem

Esc(P) = −
i
4

k2
0

∫ ∫

H(1)
0 (k0PM)

×(1− ε̃(M))E(M) dxdy. (28)

Let us note that the integral on the right-hand side
of Eq. (28) can be restricted to the set of cylinders
Ωj since k2

0 − k̃2(M) vanishes outside these cylinders.
Consequently, the scattered field can be represented
as a sum of integrals on the cylinders

Esc(P) = ∑
j=1, 2, ..., N

Esc
j (P) (29)

Esc
j (P) =

i k2
0(εj −1)

4

∫ ∫

Ωj

H(1)
0 (k0PM)

×E(M) dxdy, (30)
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By definition, Esc
j (P) will be called “field scattered

by the jth cylinder”. This field can be expressed in a
simpler form by considering (Fig. 7) the system of po-
lar coordinates linked to the jth cylinder, with origin
Oj , θj(P) and rj(P) denoting the polar angle of P and
its distance to Oj. Using Graf’s formula (Abramowitz
and Stegun, 1970) for the Hankel function, it turns
out that, if rj(M) ≤ rj(P),

H(1)
0 (k0PM) =

+∞
∑

m=−∞
exp(−imθj(M))Jm(k0rj(M))

×H(1)
m (k0rj(P))exp(imθj(P)). (31)

and thus, Eq. (30) yields, ∀P such that rj(P) ≥ Rj ,

Esc
j (P) =

+∞
∑

m=−∞
bj, mH(1)

m (k0rj(P))exp(imθj(P)) (32)

bj, m =
i k2

0(εj −1)
4

∫ ∫

Ωj

exp(−imθj(M))

×Jm(k0rj(M))E(M) dxdy. (33)

Finally, Eqs. (29) and (32) provide a modal expansion
of the scattered field at any point outside the cylinders

Esc(P) = ∑
j=1, 2, ...N

+∞
∑

m=−∞
bj, mH(1)

m (k0rj(P))

×exp(imθj(P)). (34)

It must be emphasised that the existence of a modal
expression of the field scattered by an arbitrary cylin-
der provided by Eq. (32) is quite general and extends

Figure 7 Notations used for a change of coordinate system
for Bessel functions. The subscripts refer to the system of
coordinates linked to a given cylinder.

to any kind of material (dielectric, metallic, magnetic,
perfectly conducting, etc.), regardless of the incident
polarisation (p or s). Even though this remark does
not hold for Eq. (33), it can be considered that what
follows is quite general since Eq. (33) will not be used
any more.

Equation (34) expresses the scattered field from the
polar coordinates of P in the N coordinates systems
linked to the cylinders. In order to obtain an expres-
sion of this field in a unique system of coordinates, for
instance the system linked to C ,̀ we express the right-
hand side of Eq. (32) in the ` th coordinates system
using Graf ’s formula and the notations of Fig. 7 : if
r`(P) ≤ r

j
` = O`O j , then

H(1)
m (k0rj(P))exp(imθj(P)) =

+∞
∑

q=−∞
exp(i(m−q)θ j

)̀

×H(1)
q−m(k0r

j
)̀Jq(k0r`(P))exp(iqθ`(P)), (35)

which entails that Eq. (32) becomes, ∀P such that
r (̀P) ≤ r

j
`−Rj ,

Esc
j (P) =

+∞
∑

m=−∞
bj, m

+∞
∑

q=−∞
exp(i(m−q)θ j

)̀

×H(1)
q−m(k0r

j
)̀Jq(k0r`(P))exp(iqθj(P)). (36)

The incident field given by Eq. (22) can be written in
the same form

Einc(P) = exp(ik0.OP) = exp(ik0.(OO`+O`P))

= exp(ik0r`sin(Θinc −θ`))
×exp(ik0r`(P) sin(Θinc −θ`(P)), (37)

and bearing in mind that

exp(izsin(u)) =
+∞
∑

n=−∞
Jn(z)exp(inu), (38)

it comes out from Eq. (37) that at any point P of
space,

Einc(P) = exp(ik0r`sin(Θinc −θ`)) ∑
n=−∞, +∞

exp(inΘinc)

×Jn(k0r`(P))exp(−inθ`(P)). (39)

By adding the expression of the incident field given by
Eq. (39), the expression of the field scattered by the
cylinders Cj with j 6= ` given by Eq. (36) and the ex-
pression of the field scattered by C` given by Eq. (32),
we get a rigorous modal expansion of the field around
C` ifR`≤r` (P) ≤ min

j 6=`
(r

j
`−Rj),

E(P) = ∑
m=−∞, +∞

a ,̀ m Jm(kor`(P))exp(imθ`(P)) (40)

+ ∑
m=−∞, +∞

b ,̀ mH(1)
m (kor`(P))exp(imθ`(P)),

a ,̀ m = (−1)m exp(ik0r`sin(Θinc −θ`)− imΘinc)

+ ∑
j 6=`

∑
q=−∞, +∞

bj, q exp(i(q−m)θ j
)̀H(1)

m−q(k0r
j
)̀. (41)
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In order to write the equation above in a matrix
form, we denote by a` and b` the infinite column ma-
trices of components a ,̀ m and b ,̀ m

a` = Q`+∑
j 6=`

T ,̀ jbj (42)

with Q` the column matrix of mth element Q ,̀ m given
by

Q ,̀ m = (−1)m exp(ik0r`sin(Θinc −θ`)− imΘinc) (43)

and T ,̀ j a square matrix of (m, q)-th element T ,̀ j, m, q
given by

T ,̀ j, m, q = exp(i(q−m)θ j
)̀H(1)

m−q(k0r
j
)̀. (44)

The well-known result stated in Eq. (40) is schema-
tised in Fig. 8: the field around Cj can be represented
by a Fourier–Bessel modal expansion in the dashed
annulus located between Dj and the circle of centre
Oj passing through the closest point of the other cylin-
ders (Suratteau and Petit, 1984). The authors of this
paper have used this property to solve the problem
of scattering by a grating of circular cylinders under
some conditions.

Let us point out that the two series on the right-
hand side of Eq. (40) are quite different from a phys-
ical point of view. The first, the coefficients of which
are given by Eq. (41), represents the locally incident
field, viz., the sum of the actual incident field and the
field generated by the other cylinders in the direction
of the ` th cylinder, thus acting like secondary inci-
dent fields for this cylinder. On the other hand, the
second term is the field scattered by the ` th cylinder.
As stated in §2, the coefficients of the scattered field
and those of the locally incident field are linked by a
matrix relation dependent on the parameters of the
t̀h cylinder only

b` = S`a ,̀ (45)

where S` is an infinite square matrix.

Figure 8 Domain of validity of the Fourier–Bessel expansion of
the total field around one cylinder.

After multiplying Eq. (42) by S ,̀ then using
Eq. (45) to express the left-hand side, we eliminate
the matrices a ,̀ and it comes out that

b`−∑
j 6=`

S`T ,̀ jbj = S`Q` , (46)

which may be written in the form


















I −S1T1, 2 −S1T1, 3 ... ...

−S2T2, 1 I −S2T2, 3 ... ...

−S3T3, 1 −S3T3, 2 I ... ...

... ... ... ... ...

... ... ... ... ...





































b1

b2

b3

...

...



















=



















S1Q1

S2Q2

S3Q3

...

...



















,

(47)

which is a linear system of equations, I being the infi-
nite unit matrix. If the square and column submatri-
ces S ,̀ T ,̀ j and b` are truncated in order to keep the
indices m and q between − M and + M in Eqs. (40)
and (41), the final size of the system to be inverted is
equal to N(2M +1).

Finally, let us express the scattered field at infinity
from the column matrices b .̀ With this aim, let us
consider the expression of the scattered field outside
the cylinders given by Eq. (34). In order to express
this scattered field in the system of coordinates xy, we
use Graf ’s formula once more: if r ≥ rj,

H(1)
m (k0rj(P))exp(imθj(P))

= ∑
q=−∞, +∞

exp(i(m−q)θj)Jq−m(k0rj)

×H(1)
q (k0r)exp(iqθ), (48)

where r and θ are the polar coordinates of point P of
space in the xy plane. With use of Eq. (48), Eq. (34)
becomes, far from the cylinders,

Esc(P) = ∑
q=−∞, +∞

bqH(1)
q (k0r)exp(iqθ), (49)

bq = ∑
j=1, N

+∞
∑

m=−∞
bj, m exp(i(m−q)θj)Jq−m(k0rj). (50)

The field at infinity can be expressed in a simpler
way using the asymptotic form of the Hankel func-
tion (Abramowitz and Stegun, 1970),

H(1)
q (k0r) ≈

√

2
πk0r

exp(i(k0r−q
π
2
−

π
4

)), (51)

and Eq. (49) yields

Esc(P) ≈ g(θ)
exp(ik0r)

√
r

, (52)

g(θ) =

√

2
πk0

exp(−i
π
4

) ∑
q=−∞, +∞

bq

×exp(−iq
π
2

)exp(iqθ). (53)
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The intensity at infinity (or the bistatic differential
cross section) is defined by

D(θ) = 2π |g(θ)|2, (54)

and for lossless cylinders, the energy balance criterion
writes (Van Bladel, 1964)

∫2π

0

∣

∣g(θ)
∣

∣

2dθ +2
√

λ0 Re
[

exp(i
π
4

) g(Θinc −
π
2

)
]

= 0. (55)

Numerical Application

The use of our formalism needs a prior solution to
the problem of scattering by each cylinder. For circu-
lar cylinders, the scattering matrices S` of Eq. (45)
are obtained from the classical method when the
Fourier–Bessel expansions of the fields inside and out-
side the cylinder are matched on the surface (Van
Bladel, 1964). For arbitrary shapes, a rigorous finite-
elements method on the boundary based on a single-
integral equation (Maystre and Vincent, 1972) or the
fictitious sources method described in §2 has been im-
plemented. These methods provide very precise re-
sults (generally to within 10−3) except at irregular fre-
quencies. When the new formalism is used for many
cylinders, we have implemented numerous classical
tests of validity on the numerical results (convergence
of the results when the number 2M +1 of terms in the
Fourier–Bessel expansions increases, energy balance
for lossless materials, reciprocity).

For example, Fig. 9a shows a scattering object
made of seven perfectly conducting cylinders of var-
ious shapes whilst Fig. 9b gives the intensity of the
scattered field for an s-polarised incident field with
a null incidence angle and wavelength λ0. The scat-
tered intensity has been computed for three values
of 2M +1 between θ = 0◦ and θ = 180◦ (the region
180◦ < θ < 360◦ has been removed from the curve
since the scattered intensity is very large for θ ≈ 270◦).
A convergence is obtained above M = 9. For M =
9 and 14, the energy balance criterion is satisfied
to within 10−4. The computation time on an IBM
RS/6000-560 with 30 MFlops was equal to 25 s for
M = 9.

From these tests, it comes out that the precision
remains about the same as that for a single cylinder,
but of course the computation time increases with the
number of cylinders since the size of the linear system
to be solved increases with this number.

Finally, let us illustrate the capabilities of our com-
puter code in the study of photonic crystals. Be-
cause of their periodicity, photonic crystals exhibit
transmission gaps, which means that the field can-
not propagate in such structures in a given range of
frequencies, whatever the direction of propagation
(Yablonovitch, 1994; Maystre, 1994; Joannopoulos,

et al., 1995; Nicorovici et al. 1995; Tayeb and
Maystre, 1997). It is well known that the introduc-
tion of defects in the periodic lattice generates lo-
calized electromagnetic modes. Figure 10a shows a
doped crystal, viz., a crystal with defects. This crys-
tal is composed of a set of dielectric circular cylinders
with radius R = 0.075 µm, spacing d = 0.5 µm (side of
an elementary equilateral triangle) and optical index
ν = 2.9.

Figure 10b gives the decimal logarithm of the trans-
mission of this crystal versus the wavelength. The in-
cident field is a plane wave illuminating the crystal
from the top of Fig. 10a. We compute the flux of
the Poynting vector Φtrans for the total field on a seg-
ment located below the crystal (see Fig. 10a). We also
compute the flux of the Poynting vector Φinc for the
incident plane wave only on the same segment. We

Figure 9 Test of validity on a Scattering object. (a) Scattering
object: the central circular cylinder has diameter λ0, and the
ellipses have large and small axes of 2λ0 and 2λ0/3 respectively.
The centres of the circle and of one ellipse are separated by 3λ0.
(b) Convergence of the intensity radiated by the scatterer shown
in (a).
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Figure 10 Transmission by a photonic crystal. (a) Crystal with
one defect. The segment below the structure is that used for
the computation of the transmission. (b) Decimal logarithm of the
transmission versus the wavelength for the crystal shown in (a)
(solid curve) and for the same crystal, but with no defect (dotted
curve).

define the transmission as T = Φtrans/Φinc. Of course,
the segment must be short enough since it must not
collect the power flowing around the crystal. Figure
10b also gives the transmission for the same crystal
as that of Fig. 10a, but without defect (dashed curve,
the central cylinder has not been removed). The gap
lies between wavelengths 0.9 and 1.35 µm. When the
central cylinder is removed (solid line), a sharp trans-
mission peak appears at a wavelength λ0 ≈ 1.13 µm.
This is due to the fact that, at this wavelength, a res-
onance occurs in the microcavity made by the defect,
this microcavity playing the role of a relay for pho-
tons.

The method is specially adequate for the study of
doped or nondoped photonic crystals. It is also a very

adequate tool in the study of the phenomenon of en-
hanced backscattering by a random set of rods arbi-
trarily shaped [Felbacq et al., 1994]. Many other do-
mains of investigation can be studied as well, in par-
ticular scattering by random structures, for instance,
studies of Anderson localisation of light by a random
set of cylinders.

§ 4. Hybrid Methods for Surface and
Volume Scattering

In §3, it has been shown that methods based on a
Fourier expansion of the scattered field, associated
with addition theorems for cylindrical harmonics, are
very efficient to deal with volume scattering. On
the other hand, boundary integral methods are well
suited for surface scattering. Therefore, in order to
solve problems involving both surface and volume
scattering, we present here an hybrid method that
combines both integral and S-matrix formalisms. As
a first step, we focus on the surface scattering problem
alone, and we show that, even in that case, combining
space and spectral representations may be helpful in
the case of long-range interactions.

Scattering by Randomly Rough Surfaces

This topic has been extensively studied, for a wide
range of applications, like remote sensing (Tsang
et al., 1985), nondestructive testing in optics (Good-
man, 1975) and characterisation of materials with
X-rays (Daillant and Gibaud, 1999). Our aim here
is not to review the various methods devoted to this
problem but to focus on a very efficient rigorous one,
namely the boundary integral method.

Modelisation of the Problem Let us define a ran-
domly rough surface as an infinite, flat on average,
surface with random perturbation. In the following,
only stationary surfaces are considered, and the dis-
tribution of heights is assumed to be a Gaussian distri-
bution with zero mean. In this case, the roughness can
be characterised either by an autocorrelation function
C(r− r′) or by its Fourier transform, the spectral den-
sity S(K). The height of the roughness is described by
the rms height σ =

√

C(0).
As opposed to gratings, there is no periodicity here

to allow the spatial restriction of the scattering prob-
lem to a finite area, but such a restriction is manda-
tory for numerical implementation. To overcome this
problem, several approaches have been suggested:

(a) assume a periodic roughness with large period-
icity compared to the incident wavelength and to a
characteristic horizontal scale of the roughness (if it
exists) (Maradudin et al., 1989),
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(b) restrict the random perturbation of the mean
plane to a finite area (Maystre, 1983; Soto-Crespo
and Nieto-Vesperinas, 1989) or

(c) use a finite beam as an incident wave (Saillard
and Maystre, 1988).

With the aim of modelling as well as possible
an actual experiment, we use Gaussian beams to-
gether with a beam simulation method (Saillard and
Maystre, 1988) that permits us to synthesise beams
with arbitrary size. Therefore, the problem reduces
to the solution to the basic scattering problem of a
narrow beam by an infinite rough interface. Due to
the shape of the incident wave, the field on the surface
must vanish at infinity, and the problem can be re-
stricted to a finite area with negligible loss of accuracy.
Of course the size of this area is linked to the shape of
the beam, but also to the radius of interaction. If two
points on the surface are separated by more than this
distance, a change of the surface profile or of the inci-
dent field at one of them has negligible effects on the
field at the other point. The radius of interaction de-
pends on the incidence angle, on the polarisation, on
the geometrical parameters of the surface and on the
electromagnetic constants. In the resonance domain,
for nongrazing incidence, the radius of interaction
does not exceed a few wavelengths (Maystre, 1983),
and in general, the scattering problem can be handled
with the help of a rigorous numerical method. On
the other hand, long-range interactions may occur in
case of large scales of roughness (Torrance and Spar-
row, 1967), when surface waves can propagate with
low damping (Saillard and De Santo, 1996), or un-
der grazing incidence (Brown, 1998, and references
herein).

In this section, it is assumed that the rough in-
terface separates two semi-infinite homogeneous me-
dia. In such problems, it can be shown, thanks to
Green’s theorem, that the scattered field can be de-
rived from a surface density by integration on the
boundary (Colton and Kress, 1983). Solving the scat-
tering problem can thus be reduced to the determina-
tion of an unknown surface density, and numerical
methods based on this result only require the discreti-
sation of a surface. This is a large advantage, com-
pared to volume integral methods or finite difference
in the time domain (Hastings et al., 1995), more gen-
eral but heavier from a numerical point of view. As
a consequence, boundary integral methods have be-
come very popular in the field of rough surface scat-
tering.

Boundary Integral Methods Let us consider a 1D
rough surface C described by a twice differentiable
function y = ξ(x). The complex permittivity is equal
to ε if y > ξ(x) and ε1 in the lower half-space if
y < ξ(x). The domains filled with media of permittiv-

ities ε and ε1 are denoted by Ω and Ω1, respectively.
A local direct orthogonal basis (t̂, n̂, ẑ) is defined at
each point on the surface, where the three unit vec-
tors denote the tangential, the normal (toward Ω) and
the z-axis directions respectively. The incident field is
represented by either an s- or p-polarised monochro-
matic Gaussian beam, coming from y = +∞. Denot-
ing by uinc either the electric or the magnetic incident
field, depending on whether the polarisation is s or p,
we have

uinc(x, y) =
+∞
∫

−∞

P(α−α0)exp[iαx− iβ(α)y]dα (56)

P(α) = wexp(−w2α2/2) (57)

α0 = ksinΘinc (58)

β =
(

k2 −α2
)1/2

, Im (β) ≥ 0. (59)

The beam waist w and the mean angle of incidence
Θinc characterise the incident beam, and k represents
the wavenumber in the upper medium. Let us write
the scattered field at P in the upper medium as a
single-layer potential with surface density φ (Maystre
and Vincent, 1972; Martin and Ola, 1993):

usc(P) =
∫

C

G(P, M′)φ(M′)ds′, (60)

where G denotes the 2D free space Green’s function
with wavenumber k.

Taking the limit of usc (Eq. (60)) and of its normal
derivative when P goes to the boundary gives both the
value of the field on the boundary and the outer limit
of its normal derivative as a function of φ:

u(M) = uinc(M) +
∫

C

G(M, M′)φ(M′)ds′, (61)

(

du
dn

)

Ω
(M) =

du
dn

inc

(M) +
1
2

φ

+
∫

C

dG
dn

(M, M′)φ(M′)ds′. (62)

Then applying Kirchhoff–Helmholtz formula to the
total field in Ω1 and taking into account the bound-
ary conditions (uΩ = uΩ1 ,

(

du/dn
)

Ω1
= q1

(

du/dn
)

Ω
with q1 = 1 in s-polarisation and q1 = ε1/ε in p-
polarisation) leads to the integral equation. Using an
operator notation, viz., representing an integral op-
erator by its kernel, we derive (Saillard and Maystre,
1990)

[(

δ
2
−

dG1

dn′

)

G+q1G1

(

δ
2

+
dG
dn′

)]

φ

= −
(

δ
2
−

dG1

dn′

)

uinc −q1G1
duinc

dn
. (63)

As applied to bounded scatterers, such an integral
equation does not ensure uniqueness of the solution
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for the resonant frequencies of the associated interior
Dirichlet problem. Since here the scatterer has infinite
size, the spurious resonances do not occur, and using
some combined field integral equation is not neces-
sary.

Then Eq. (63) may be transformed into a set of lin-
ear equations with the help of a method of moments
or a boundary finite-element method. Once the inte-
gral equation is solved, the scattering pattern at infin-
ity is computed. Above the highest excursion of the
surface profile, the scattered field can be written as a
superposition of outgoing plane waves

usc(x, y) =
+∞
∫

−∞

B(α)exp[iαx+ iβ(α)y]dα (64)

with

B(α) =
−i

4πβ

∫

C

φ(x)exp[−iαx− iβ(α)ξ(x)]dx . (65)

The differential reflection coefficient (DRC), which
gives the part of the incident energy scattered into an
angular interval δΘsc around the scattering direction
defined by the scattering angle Θsc = (Oy, ksc), writes

DRC =

∣

∣β(αsc)B(αsc)
∣

∣

2

Pinc
, (66)

where αsc = ksinΘsc and Pinc is the total incident flux
through a horizontal line:

Pinc =
∫

β(α)
∣

∣P(α−α0)
∣

∣

2dα , (67)

With a method of moments, the size of the linear sys-
tem results from the size of the sampled area, out of
which φ is assumed to be negligible. In some cases,
it was observed that the surface density φ decays very
slowly away from the illuminated area, and another
numerical method has been suggested to reduce the
number of unknowns. It is illustrated here in the case
of propagation of surface waves on metallic surfaces.
It has also proven to be efficient under grazing inci-
dence (Daillant and Gibaud, 1999).

Surface Waves The low decay of the unknown does
not result from an inappropriate choice of the surface
density, but involves some physical phenomenon, for
instance propagation of surface polaritons along the
boundary with metallic materials in optics. Indeed,
since Wood anomalies on gratings have been observed
(Wood, 1902), it is known that surface roughness
can couple a p-polarised incident wave with surface
plasmons on common metals like aluminium, silver
or gold. In this case, the decay of the surface wave
is governed by absorption in the metal and by scat-
tering from surface roughness. For very rough sur-
faces, the damping only requires a few wavelengths,
but for shallow surfaces, several tens of wavelengths

may be necessary. Therefore, the small perturbations
method, taking multiple scattering of surface waves
into account (Marvin and Celli, 1994), was used for
very small heights, while the rigorous integral formal-
ism combined with a moment method was restricted
to deep surfaces. The aim of the method described
consists in extending further the use of the boundary
integral method down to the domain of validity of the
perturbation theory.

The idea is quite simple. On a flat surface, a surface
plasmon is a superposition of two plane waves trav-
elling in opposite directions, thus requiring only two
complex numbers for its description in the Fourier
space. When a shallow random roughness is superim-
posed, the surface mode becomes localised (Maystre
and Saillard, 1994), but its spatial extension is still
large compared to the wavelength, and its spectral
width, although finite now, remains small. Conse-
quently, it is more convenient to use a Fourier basis
to describe the surface density. On the other hand,
the use of the beam simulation method to model ac-
curately a true experiment requires localised test func-
tions tm for the integral equation, which is why this
method is referred to as a coordinate-spectral method.
This approach can be compared to the use of sheet
sources in the MFS described in §2.

Since this problem concerns metallic surfaces, the
high imaginary part of the refractive index makes
the associated Green’s function very narrow, permit-
ting us to use the so-called impedance approxima-
tion, which consists in assuming a local relationship
between the tangential electric and magnetic fields
on the boundary, instead of an integral one. In this
frame, Eq. (63) written in M(x, ξ(x)) becomes

D1(M)Gφ +q1N1(M)
(

δ
2

+
dG
dn′

)

φ

= −D1(M)uinc(M)−q1N1(M)
duinc

dn
(M) (68)

with

N1(M) =
∫ +∞

−∞
G1(M, M′)dx′

≈
−i

4k1

1
√

1+ ξ′2(x)
(69)

D1(M) =
∫ +∞

−∞

(

δ
2
−

dG1

dn′

)

(M, M′)dx′

≈
1
2
−

i
4k1

ξ′′

(x)

√

1+ ξ′2(x) , (70)

where ξ′ and ξ′′ denote the first and second derivatives
of the surface profile.

The numerical implementation requires a sampling
in the Fourier space of the unknown surface density
φ. With the aim of using FFT algorithms, the un-
known is assumed to be periodic, with periodicity L
equal to the length of the sampled interval, to make
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sure this periodicity has no influence on the result. In
other words, the surface density coincides with the pe-
riodic computed unknown on [−L/2, L/2] and van-
ishes outside.

Denoting by

f̃ n =
1
L

L/2
∫

− L/2

f(x′)exp(2iπnx′/L)dx′

the nth Fourier coefficient of a function f(x) and by
fm =

∫ +∞
−∞ f(x)tm(x)dx the scalar product of f with a test

function tm, the discretised form of the integral equa-
tion (68) writes

D1m ∑
n

Am, nφ̃n+q1N1m ∑
n

Bm, nφ̃n

= −D1muinc
m −q1N1m(M)

(

du
dn

inc
)

m

(71)

with

Am, n =
1
L

+∞
∫

x=−∞

L/2
∫

x′=−L/2

G(x, x′)tm(x)

×exp(2iπnx′/L)dxdx′ (72)

Bm, n =
1
2

(

t̃m
)

n
+

1
L

+∞
∫

x=−∞

L/2
∫

x′=−L/2

dG
dn

(x, x′)tm(x)

×exp(2iπnx′/L)dxdx′. (73)

For accurate computation of the matrix elements
from Eqs. (72) and (73), the choice of the test func-
tions tm must obey the same constraints as in a classi-
cal method of moments, typically 10 sampling points
per wavelength in the resonance domain, but here,
this does not influence the number of unknowns, re-
sulting from the truncation of the Fourier series in
Eq. (71).

To validate and show the capabilities of the
method, we have compared numerical results with
the experimental results described in West and
O’Donnell (1995). An interface separating air
from gold is illuminated in the visible region
(λ0 = 0.612 µm, ε1 = −9.1+ i1.1). The spectral
density S(K) is a window function centred at
K = 2π/0.578 µm−1 and width ∆K = 2π/1.315 µm−1.
The rms height of the surface is rather small:
σ = 0.0109 µm. In Fig. 11, we have plotted the sur-
face density φ(x) when the surface is illuminated by
a beam of width w = 18λ0. The strong excitation of
the surface waves leads to a low decay of the surface
density that needs about 100 wavelengths to become
negligible. To solve this problem accurately, 2200
test functions but only 1200 Fourier coefficients for
φ were needed. Compared to a method of moments,
the number of unknowns is thus divided by a fac-

tor close to 2. The scattering pattern shown in Fig.
12 agrees very well with that of Fig. 7 of West and
O’Donnell (1995), and exhibits a strong backscatter-
ing enhancement as a result of multiple scattering of
surface waves.

Scattering by Rough Inhomogeneous Media

Now, the lower medium is no longer homogeneous
but contains bounded scatterers, and we focus on
the statistical problem with many small homogeneous
scatterers uniformly distributed (Fig. 13).

Limitation of Integral Methods Since all the scatter-
ers are homogeneous, the boundary integral method
described above can be generalised easily. However,
as a strong shortcoming, when the number of embed-
ded scatterers is increased, both memory and com-
putation time requirements also increase very rapidly.
For instance, a small cylindrical scatterer requires at
least 10 boundary finite elements, and the singular-
ity of the kernels of the integral equation must be
treated carefully. On the other hand, the scattered
field can be accurately described with a small num-
ber of terms in the Fourier–Bessel expansion: only
one for s-polarisation (isotropic scattering) and three
for p-polarisation. Therefore, we have developed an
hybrid method, where a mixed representation of the
scattered field is used: an integral representation for
the contribution from the surface density lying on the
rough interface, and a Fourier–Bessel expansion for
the volume scattering part (see §3). This approach
drastically reduces the number of unknowns, at least
in the case of scatterers with dimensions smaller than
the wavelength. As a counterpart, a rigorous treat-
ment requires the calculation of the scattering matrix
of the object. This goal can be achieved with the help
of the method of fictitious sources described in the
second section of this chapter.

Combination of Integral and S Matrix Formalisms
Let us consider a set of homogeneous scatterers
Ωj(j ≥ 1) bounded by Cj, and an associated set of lo-
cal systems of coordinates Ojxy, with the origin Oj
located inside Ωj. The local polar coordinates of a
point P are given by rj = OjP and θj = (Ojx, OjP). Let
us denote by usc

j the Fourier–Bessel expansion of the
field scattered by the jth rod in terms of outgoing Han-
kel functions

usc
j (P) =

+∞
∑

n=−∞
bj, n H(1)

n (k1rj)exp(inθj), (74)

where k1 represents the wavenumber in the surround-
ing medium. This expression is valid outside the
smallest circle centred at Oj containing Ωj. If the
Bessel functions are chosen for the description of the
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Figure 11 Modulus of the surface density (solid line) and of
the incident magnetic field (dashed line) versus x(µm), on a
gold-coated rough surface illuminated by a p-polarised Gaussian
beam with wavelength λ = 0.612 µm.

Figure 12 Differential reflection coefficient versus scattering
angle Θsc, averaged over 500 samples illuminated by a Gaussian
beam (w = 18λ, Θinc = 10◦). The backscattering peak is located
at −10◦, and the specularly reflected beam at 10◦ has been
truncated.

field u
imp
j impinging on the jth rod, we have

u
imp
j (rj, θj) =

+∞
∑

m=−∞
aj, m Jm(k1rj)exp(imθj), (75)

where the incident and scattered complex amplitudes,
aj, m and bj, n respectively, are linked through the scat-
tering matrix Sj. Still using a boundary integral rep-
resentation for surface scattering, Eq. (63) becomes,
at any point on C,

[

(
δ
2
−

dG1

dn′ )G+q1G1(
δ
2

+
dG
dn′ )

]

φ + ∑
j≥1

usc
j

Figure 13 Geometry of the surface–volume scattering problem.
A set of homogeneous rods is embedded in the lower medium,
below a rough interface.

= −(
δ
2
−

dG1

dn′ )uinc −q1G1
du
dn

inc

. (76)

This equation gives a first set of relationships, that
couples the surface density φ and the incident ampli-
tudes aj, n. To complete the linear system, we must
link aj, n to the field radiated by the surface density
and by the other rods toward the jth rod. The first
step consists in projecting this field onto the local ba-
sis of incident fields Jn(k1rj) exp(inθj). Let P(rjθj) be
a point in the neighbourhood of Oj, and M′(r′j, θ′

j) a
point on the surface C. Thanks to Graf ’s formula, if
OjP < OjM′ ,

G1(P, M′) =
−i
4

+∞
∑

m=−∞
H(1)

m (k1r′j)

×Jm(k1rj) exp(im(θj −θ′j)), (77)

n̂′.grad M′G1(P, M′) =
−i
4

+∞
∑

m=−∞
Cm(M′)

×Jm(k1rj) exp(im(θj −θ′j)) (78)

with

Cm(M′) =
∂H(1)

m

∂r′
(k1r′j)

n̂′.OjM′

r′j

−
im
r′j

H(1)
m (k1r′j)

t̂′.OjM′

r′j
. (79)

Then the field radiated in P by the surface density
φ writes

usc
surf(P) =

+∞
∑

m=−∞
a(s)

j, m Jm(k1rj) exp(imθj) (80)

with

a(s)
j, m =

−i
4

∫

C
[Cm(M′)u(M′)

−H(1)
m (kOjM′)

(

du
dn′

)

Ω1

(M′)]ds′ , (81)

where u(M′) and its normal derivative are given by
Eqs. (61) and (62). Hence, Eq. (81) allows us to
express the incident amplitudes as a function of the
surface density. The same projection is also applied
to the field scattered by the other rods toward Ωj, as
explained in the previous section. Applying Eqs. (35)
and (36) and adding the surface contribution leads to

aj, m = a(s)
j, m +∑

l 6=j

+∞
∑

n=−∞

+∞
∑

p=−∞
Sl, np al, p

×H(1)
m−n(k1OlOj)exp(i(n−m)θl(Oj)) . (82)

Therefore, provided the scattering matrix is known
for each rod, Eqs. (76) and (82) lead to a set of lin-
ear equations with incident amplitudes al, p and sur-
face density φ as unknowns, with the same number of
equations and unknowns.

Numerical Results This method has been used to
investigate the possibility of separating this surface–
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volume scattering problem into two simpler prob-
lems, surface scattering and a volume scattering, the
scattering patterns then being added incoherently.
Such a conjecture is suggested by some approximate
theories (Calvo-Perez et al., 1999), but the domain of
validity of this rule is not known, and only a rigorous
tool can investigate strong roughness, high dielectric
contrast, high density of scatterers, etc.

Let us consider a Gaussian rough surface with
rms height σ = 0.3λ0 and correlation length l = λ0/2
(length such that C(l)/C(0) = 1/e), separating vacuum
from a lossy medium with permittivity ε1 = 3+ i0.4, in
which small perfectly conducting circular rods (radius
a = 0.07λ0) are filling 3% of the volume. The incident
beam is s-polarised with waist 6λ0 and mean incident
angle Θinc = 20◦. In this problem, a few hundreds of
rods lie in each sample, and thanks to this method the
number of unknowns is restricted to about 1500. Fig-
ure 14 shows the scattering pattern at infinity (solid
line), and compares it with that obtained by summing
two contributions (dashed line):

(i) the intensity scattered from a rough surface with
the same geometrical parameters, but effective per-
mittivity derived from Keller effective medium theory
(dotted line) (Keller, 1964) and

(ii) the intensity scattered from the metallic rods
below a flat interface (dot-dashed line).
It must be noted that the patterns agree amazingly
well except in the specular and backscattering direc-
tions.

In conclusion, the computational efficiency of this
method comes from the combination of natural bases

Figure 14 Differential reflection coefficients versus scattering
angle Θsc, averaged over 400 samples illuminated by a Gaussian
beam (w= 6λ,Θinc = 20◦). Solid line: scattering from the rough
inhomogeneous medium. Dot–dashed line: scattering from the
rods below a flat interface. Dotted line: scattering from a rough
surface with effective lower medium. Dashed line: sum of the last
two curves.

for bounded and unbounded scatterers: cylindrical
harmonics on one hand, boundary finite elements on
the other. In addition, thanks to the beam simulation
method, samples with arbitrary size can be handled.
Therefore, it is a very versatile tool for investigating
scattering properties of inhomogeneous coatings like
paints or studying phenomena like backscattering en-
hancement or the shift of Brewster’s angle due to dis-
order.

§ 5. Conclusion

We have presented numerical methods of increasing
complexity that are able to solve with precision a wide
variety of problems of scattering, including scattering
from a single object, scattering by a set of randomly
or periodically placed scattering objects and scatter-
ing by an arbitrary set of scatterers located below a
random interface separating two dielectric materials.

The same kinds of problem may be solved using
well-known methods like boundary or volume finite-
elements methods and FDTD, but it appears that the
methods we have described are very efficient and at-
tractive in many practical problems.

A generalisation of these methods to 3D prob-
lems of scattering is straightforward from a pure the-
oretical viewpoint, but very costly for the numeri-
cal implementation. It is worth noting that some of
these generalisations have been achieved, for instance
the use of fictitious sources method for 3D scatterers
(Hafner, 1990), the use of the S-matrix method for
a set of spheres (Defos du Rau, 1997) and the use
of the one-unknown integral equation for scattering
from randomly rough surfaces (Pak et al., 1997). Of
course, the numerical programs are much more diffi-
cult to implement than those devoted to 2D objects
but progress in the modelling of 3D objects is neces-
sary for many practical applications like the study of
doped or nondoped photonic crystals, precise treat-
ment of sea or ground scattering and remote sensing
for buried objects.
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