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THE METHOD OF FICTITIOUS SOURCES APPLIED TO DIFFRACTION GRATINGS

G. Tayeb

Laboratoire d'Optique Electromagnétique, Unité de Recherche Associée au CNRS N. 843
Faculté des Sciences et Techniques de Saint Jérome (Case 262), 13397 MARSEILLE Cedex 20, FRANCE

ABSTRACT.  This paper deals with grating diffraction in
electromagnetic theory, using the method of fictitious
sources. We present a detailed description of the method,
and we lay stress on its numerical implementation.
Numerical examples are given for various grating profiles,
and compared to those obtained with other methods. An
efficient method for the computation of the Green's
Jfunction for gratings and its derivatives is given.

1. INTRODUCTION

The method of fictitious sources (MFS) relies upon a
simple idea: the electromagnetic field in the different
domains of the structure is expressed as a combination of
fields radiated by adequate sources. These sources have no
physical existence, and this is why we call them "fictitious"
sources. In other words, we can say that they generate
electromagnetic fields which form convenient bases for the
actual field. From a numerical point of view, proper bases
are those capable of representing the solution with the
fewest number of functions. Obviously, the quality of the
bases is closely linked with the nature of the sources and
their location. This fact entails one of the most problematic
features in the numerical implementation: how to choose
between the infinite possibilities of fictitious sources? In
this paper, we try to give some basic answer elements to
this question, and we present results for various shapes of
gratings. Two kinds of sources have been implemented.
They are both described, but we only give results for the
wire sources that we found more adequate.

Another difficult subject is the computation of the field
radiated by the sources. For our purpose, we need to
compute the Green's function for gratings [1] with good
accuracy and reasonable computer time. This Green's
function is expressed in series, and their direct summation
converges extremely slowly. The algorithm used in order
to enhance the convergence rate of the Green's function
and its gradient is described in section 4.

We began our study with this method a few years ago,
both from a theoretical [2, 3] and from a numerical [3, 4]
point of view. At the same time, two other groups have
worked on the same basic ideas [5, 6, 7, 8, 9, 10]. Because
their approaches are different from ours, it seems
interesting to compare our results to those concerning
gratings of cylinders, echelette gratings, and sinusoidal
gratings published in these papers. Some comparisons with
a code using an integral method are also performed.

2. THE MFS ALGORITHM
In this section, our purpose is to give an outline of the

basic scheme of the MFS. We only lay stress on the
implementation of the algorithm, and for more theoretical
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considerations, the reader can report to references [2, 3].

2.1 Notations

For the sake of simplicity, let us first consider the case
of the ruled grating depicted in Figure 1. The grating
surface y = f(x) is z-independent. Function f(x) is periodic,
and its period d is the grating pitch. Because all the
electromagnetic functions involved in the solution of the
problem are pseudo-periodic [1], it is sufficient to consider
only one period of the grating. We call "grating profile"
the curve &2 which is the graph of f(x) for 0 < x < d. The
superstrate Q, is the region y > f(x), filled with a material
whose real permittivity is €, = v;°. The substrate Q, is the
region y < f(x). It is filled with a material whose complex
permittivity is &, = v,

Throughout the paper, we assume a time dependence in
exp(—iwt), and the grating is illuminated under the
incidence 6 by a plane wave. We only consider the two
fundamental cases of polarization called E/ or H/
depending on whether the electric field or the magnetic
field is parallel to the z axis. Therefore, the incident field
as well as the total field can be represented by scalar
complex functions u'(x,y) and u(x,y), namely the z
component of the electric or magnetic field depending on
the polarization. Denoting by g, and p, the permittivity

and the permeability of the vacuum, we put
kO = 2“/% =0 (80]10)1/2, kl = ko Vl, k2 = ko V2 . Putting
o =k; sinb (1)

and B, = k; cosO, the incident field can be expressed as:

0]

u'(x,y) = exp(iogx —iBgy)

Figure ]

2.2 Unknowns

We search the total field u(x,y) in each region of space.
For convenience, let us define in Q, the diffracted field
ud(x,y) as the difference:

w(x,y) = u(x,y)-ui(x,y) 3)



Noting that the incident field verifies in whole space:

Avt +kui=0 )
the solution must fulfil the following requirements:
a) Au®+kZu'=0 inQ, )
b) Au+ky>u=0 inQ,, )

¢) aradiation condition for v in Q,andforuinQ,, (7)
d) the boundary conditions on the grating surface for the
total field and its normal derivative:

ut =u” =u(x,f (%) ®)
p*Du" =p Du” ®
where

«+ Du stands for the normal derivative of u on &,

« superscripts + (or -) in u and Du stand for the limit
values obtained when the ficlds are taken in Q, (or £2,),

« coefficients p* and p~ are both equal to 1 in E//
polarization, and are equal to 1/g; and 1/, in H/
polarization.

Using (3), the boundary conditions (8) and (9) on &
can also be written as:

u' (x, £(x)) +ud (x,£(x)) = u(x,f(x)) @)

p*Du' +p* Dud = p~Du~ €D

Due to the radiation condition, the fields ud(x,y) in
Q, and u(x,y) in Q, can be expressed in an integral form
from their values on &7 and from the value of their normal
derivatives on & (Kirchhoff-Helmholtz formula) {1, 11].
At the present time, we only need to mnotice that the
problem reduces to the search of the two functions
u(x,f(x)) and p* Du* = p~Du~ defined on .

From what precedes, it appears that we can
characterize the fields by columns defined on &7, and we
put:

F=lt f(x.f (x)) u (x.f (X)) “Ex,fgx)) (10)
p Du' p Du¢ p Du
The boundary conditions can now be written as:
F+Fl=F (an

and it is worth noting that F¢ represents limit values on
2 of the diffracted field in Q,, whereas F represents
limit values on &2 of the total field. Note that the total
field is also the diffracted field in Q2.

2.3 Expansions of the fields

In the domain Q,, the total field u(x,y) must satisfy the
Helmholtz equation (6) and a radiation condition. It can be
expressed as an adequate combination of an infinite set of
fields e, ,(x,y) which verify these two requirements. We
can choose for e30(X,y) the field radiated by a fictitious
source located in Q,, supposing that the whole space is
filled by a material of permittivity €,. This source is
represented by a pseudo-periodic distribution S, ; whose
support is in Q,. Because this elementary field e,
satisfies

Aey, +ko? ey =Soq (12)
it also verifies (6). In the same way, ud(x,y) will be
expressed as a combination of fields e, ,(x,y) radiated by
fictitious sources S, located in Q,, supposing that the
whole space is filled by a material of permittivity €,:

Ael,n +k12 eLn = Sl,n (13)
Let us define the columns:
e (x,f(x e, . (x,f(x
B, = I;n( ( ))’Fz,“= zi,,.( (x)) . 14)
p Del,n p Dez,n

From a practical point of view, the problem can be
summarized in the following way: find the coefficients c, ,
and 2 (the complex amplitudes of the sources S;, and
S, ») in order to fulfil the boundary conditions:

Fl+zcln Fn= ZC2nF2n as)
The solutmn will further be given by
u (x,y) = ch,,, €a(X,Y) in €, (16)
n
u(%,y) = 2 Con €20 (X.Y) in Q, an
n

This simple presentation hides difficult problems of
functional analysis. The interested reader will find in
references [2, 3] more information about the functional
spaces in which F columns lie, about the way to get total
families F,,, and F, , in these spaces, about the subjacent
notion of convergence, etc...

2.4 Least squares minimization

For the numerical implementation, we will retain a
finite number N of basis functions, i.e. N fictitious sources
for the expansions (16) and (17). Due to this truncature,
equation (15) will not be exactly fulfilled, and we use a
least squares technique to find the coefficients c; , (N) and
¢y.2(N) which give the following norm its minimum value

AN:

Ay =min[F + > ¢ (N)F - Y ¢;,(N)E4[(18)
n=LN n=1LN
This norm is induced by the scalar product (F|F’) of two

columns F and F' defined on &7

u u

F= . (19)
A\ v

(FF)=[ @U+ouo@+vv)de (20)

where 9, stands for the tangential derivative on &°, and £
is the curvilinear abscissa. In the numerical
implementation, it appears useful to give appropriate
weights to the different terms of the norm and we take:

IE = w, | uffde+w, j]atu|2 de+ws [|vfae
P P & 1)
def
=w) A(F) + wy N o(F) + wi A5(F)

The choice of the three positive constants w,, w, and w; is
of great importance in the efficiency of the numerical
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process. Indeed, equation (14) shows that the two
components of any column F are generally not of the same
order of magnitude. The ratio between these two
components depends on numerous parameters such as the
spatial variations of the fields (through the spatial
derivatives, which are themselves linked with the
wavelength, the location of the fictitious sources, the
permittivities), the polarization and the permittivities €,
and ¢, (through the parameters p* and p7). Many
numerical experiments have been done in order to
determine a convenient way to choose these weights.
Obviously, there is no perfect and general solution, and at
the present time, our computer code uses the following
recipes:

» Wetake w, = 1

« The second term containing the tangential derivative in
(20) or (21) results from theorctical considerations
detailed in [2]. The numerical experiments that we have
performed have shown that this term is of minor
importance in most computations. Therefore, all the
numerical examples given in this paper are computed
taking w, = 0. But it is worth noting that, because this
term contains tangential derivatives, it could be
interesting to take it into consideration in the
minimization process in the case where the solution
would exhibit spurious tangential variations.

The weight w, is computed from the values of F, , and
F,, in 2 way which gives approximately, and whatever
the parameters (wavelength, location of sources,
polarization, permittivities), the same importance in the
norm to the two terms A, and A; (Eq. (21)). This is
achieved by taking:

T olll e o
n;LN Jga[ . 2] das

where (referring to (14) and (21)), the numerator (resp.
denominator) is the sum over all the basis functions of
the first term A(, (resp. A;).

_ @
+ Ip_ DeZ,n

In the numerical implementation, all the integrals on
& are performed with the simple rectangular rule, and we
denote by N, the number of sampling points. With that
choice, the size of the matrix involved in the least squares
problem is 2Ny x2N. In the numerical examples of
section 3, the ratio N/N is taken equal to 1.5 or 2.

One of the important features of the MFS is that the
least squares minimization process gives an estimation of
the accuracy of the solution. Referring to (18), let us define
a normalized error A as:

A= An (23)
IE:]

Although it seems impossible to find a rigorous

quantitative relationship between A and the accuracy of the

solution, it appears that the value of A? generally gives a
good idea of the accuracy of the diffracted efficiency in
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each order (see section 3.3). This is why A? will be
reported in the numerical examples of section 3. This
feature is quite interesting from a practical point of view.
Indeed, it enables one to dispense with time consuming
convergence tests.

2.5 The grating Green's function

Let us consider the "pseudo-periodic Dirac distribution for
gratings" [1}:

3% (x,y)= D 8(y) 8(x—md) exp(imaied)

meZ

24

The pseudo-periodic solution g (x,y) (subscript k recalls
the optical parameter k = o (ep)'2 of the medium) of the
equation

Mg +k g =8, (25)

which satisfies a radiation condition for y — %o, is the so-
called grating Green's function [1]:

1
ge(X.y)=—— —CXP(IOt X+1Bp|y) (26)
2i dmeZ ﬁm ml I
where
Oy =0g+m2n/d @n
e (28)

with B, being chosen in such a way that its imaginary part
is positive.

2.6 Fictitious sources and basis functions

In order to get the total families F, nand F, . we must

choose convenient sources S, ; and S, . We have used two
kinds of sources (wire sources and continuous sources),
which are described below.
We first focus on the determination of columns F,, . We
consider (Figure 2) a periodic curve (with period d) located
in Q,, and define 93 as the first period (0 < x <d) of this
curve.

Wire sources:
Let us consider a point P, | with co-ordinates (x, ,, y;,) on
A. According to (13), (24) and (25), the source

Sl,n =6?(x_x],n’y—yl,n)

= D 8(y-y1,) 8(x-X;,, - md) exp(imoigd) (29

meZ
gives rise to the elementary field:

e (X,¥) =8k, (X=X 0,Y — ¥Y1,0) (30)

This field e, , possesses an intuitive physical interpretation.
Indeed, 1t can be considered as the field radiated in the
whole space filled with material of permittivity €, by an
array of currents flowing in infinitely thin wires. These
wires are parallel to the z axis, and intersect the (x,y) plane
at points (x, ,+ md, y, -

The column F,  associated with S,  is then given by (14)
from the knowledge of the Greens function and its
gradient. Finally, the set of columns F, n @=L N) is



obtained through the choice of a layout of N points P, | on
the curve &A.

Figure 2. The value of x, , is in [0,d][.

Continuous sources:

These sources are characterized by a pseudo periodic
distribution whose support is 93. Denoting by ¢, the
curvilinear abscissa on 94 and by L, the length of one
period of &3, S, is defined on the first period (0 < x <d)
by:

Sl,n = exp(in27t [1/L1) 8?1 (31)
and gives rise (Eq. (13)) to the elementary field:
eLa(x,y) =
jeinzxel/h Bk, (X-xl(fﬂ,)"}’l(fl)) d, (32)

A

where x,(£,) and y,(¢,) are the co-ordinates of the point
going along Z3. The second component of the column F, |
associated with S,  is given by the integral:

Deyq (x,£(x)) =

J‘einZnellL, Dgy, (x-x,(¢,).£(x) —y1(8y))dey 33)
2

Integrals (32) and (33) are computed by Gaussian
quadrature, using Gauss-Legendre polynomials [12]. We
finally get the set of N columns F,  (we assume here that
N=2P+1 is an odd number) by takilig n between -P and P.
From Eq. (31), these sources can be interpreted as
continuous surface currents flowing on 93; their harmonic
variations become quicker as n increases.

The determination of columns F, is performed in the
same way, using a curve %5 located in Q,, and taking the
Green's function g, , (associated with the medium that fills
the substrate).

It is worth noting that, to our knowledge, theoretical
considerations cannot predict how fast the convergence of
the algorithm is with respect to the number of sources N.
Indeed, we can expect to improve the rapidity of
convergence by a good choice of curves 73 and 93, and,
in the case of wire sources, by a convenient layout of points
P, and P, on these curves. The numerous possibilities in
these choices make the method powerful, but, on the other
hand, make the programmer's work difficult. The
examples of section 3 give some light on this subject.

From our experiments, we found the wire sources more

convenient than the continuous sources. In the case of
complex shaped gratings, they are easier to bandle (their
location can be done automatically from the sampling
points on &7, whereas the continuous sources need an
explicit definition of curves &3 and 9%). Except for the
echelette grating, all the examples given in section 3 have
been tested with both kinds of sources. For each of them,
the wire sources give more accurate results with less
computation time. This is why, in section 3, we only
present results with the wire sources.

2.7 Infinitely conducting materials

The case of an infinitely conducting substrate is solved

in the same way. In this case, the sources S,, vanish, and
the number of unknowns is divided by two (just put ¢, , =0
in Eq. (15)).
When dealing with a dielectric or a lossy grating, it often
appears interesting to also consider the case of an infinitely
conducting grating. Indeed, it needs very little additional
numerical effort (since the columns F, , have already been
computed), and it can give supplementary information and
checking (through the energy balance, for instance).

2.8 Computation of the efficiencies

The diffracted efficiencies are obtained from the
amplitudes ¢, , and c, , of the sources. For instance, in the
case of wire sources, Eqs. (16), (30) and (26) give the
Rayleigh expansion of the diffracted field in Q;:

ul(xy) = Y Ry expliogx +iBny)

meZ
where the Rayleigh coefficient R | is given by:
1
= €1, EXP(—i —-i 35
m 2id ﬁl,m ey Ln Xp( cx'mxl,n Bl,myl,n) ( )
In the same way, the Rayleigh coefficients of the
transmitted field in Q, are:

G4

= Cy , eXp(—io X5, +1 36
m 2id BZ,m nzl’NZ,n xp( ma2,n BZ,mYZ,n) ( )

From these Rayleigh coefficients, the calculation of the
efficiencies is straightforward.

3. NUMERICAL RESULTS

We give in this section some numerical results for
various shapes of gratings. We compare our data with
those given in [6, 7, 8], and also give new ones.

In order to check the accuracy of the computations, we
report the square of the normalized error A? defined by
(23). We also report the sum X of all the diffracted
efficiencies. This sum must be equal to unity when all the
materials are lossless.

We denote by T the computation time for both
polarizations cases (E// and H//) on an IBM RS/6000
workstation using a PowerPC 601 processor (about 13
MFlops).

3.1 Sinusoidal grating
The grating profile is described by:
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h 2mx
y=f(x)= > (l+cos( 3 D (G7N
Let us consider the following data: d=3.9A, h=052,
€, = €y, &, = 3 g, 0 =30°. We use N =30 wire sources on
the lines 4 and Z3 described by:

fi(x)=f(x)-¢; and £,(x)=1f(x)+e, 3%
with e, = e, =0.375 L. These sources are equally spaced in
the x direction (Figure 3).

1.0 L . P,
05 Tl LT e P
DT ¥

004 oL e
—0.5 ] T 1 1 LENnS S T 1T 7 T LENL AR SR T L |
0] 1 2 3 4

Figure 3. The dots on 94 and % show the location
of the sources. The dots on P show the N, sampling
points used in the least squares problem.
Dimensions are given in units of A.

Table 1 gives the diffracted efficiencies and the energy

balance |Z-1|, which are compared with those given by

Boag et al. in [8]. The most significant differences between

their method and ours are:

« in [8], the sources are strips instead of wires,

« in [8], the boundary conditions are imposed on a number
of points which give a square system of linear equations,
whereas we use more sampling points and a least
squares algorithm.

The results are in perfect agreement. It must be noticed

that, because this grating profile is very smooth, we easily

obtain a high accuracy. The computation time for Table 1

is T = 21s for both polarizations. By reducing the number

of sources from N =30 to N=15, we still get 4 exact
digits on each efficiency, and T falls to 3s.

Let us consider (Figure 4) a deep metallic sinusoidal
grating, with d=0.38333333 ym, h=08 pum, ¢, =g,
v, =13 +1i7.1 (aluminium), A = 0.6 pm, 6 = 0°.

In the case of such deep gratings, numerical
experiments have shown that taking for 43 and %3 lines
translated from & (as in Eq. (38)), and taking the

E// H//
From ref. [8] MFS MES

€,.s [0-000045851 |0.000045852 | 0.000047376
€., [0.0011340  |0.001134006 [ 0.001234301
€. ; [0.0080707 |0.008070730 | 0.008229349
e, |0.020802 0.020802137 | 0.018170862
e, |0.012813 0.012812680 | 0.008577814
€., |0.0029595 10.0029594570.001316383
€., |0.050775 0.050775064 | 0.008784567
€.¢ {0.000000010 |0.000000010 | 0.000000009
€7 [0.000000027 | 0.000000027 | 0.000000032
€, |0-000000003 |0.000000003 | 0.000000007
€,.s |0.000000069 | 6.000000069 | 0.060000097
€4 0.000015240 | 0.000015240 | 0.000022144
€. [0.0010135 0.001013501 (0.001271741
e, [0.022739 0.022738876 | 0.026661619
e, 0.18653 0.186525791 | 0.215598073
€, [0-33415 0.334153259 | 0.412516658
e, |0.33666 0.336658394 {0.278727999
€., [0.016407 0.016407201 | 0.018145503
€. (0.0045496 |0.004549572|0.000479686
€4 {0.0013381 |0.001338132 {0.000215810
IZ-1]{ 0.17E-6 0.10 E-8 0.31 E-7

A? 0.36 E-10 0.12 E-10

Table 1. Reflected e, , and transmitted e

tn

efficiencies in order n fo'r the grating of Figure 3.

0.9+

08—

07 o

0.6

0.5
0.4

L LA B B T
00 01 02 03 04 05

i I i

0.6

0.7

L B B
08 09 10

Figure 4. Deep metallic sinusoidal grating.
In this case, N = 50, and N; = 100.

N E// H/ T
€o %17 G A? o |G T &% A?

40 {.178 310 S8 E-2 |.369 .164 93 E-3 3ls
50 1.1791 3140 A8 E-2 |.37063 .16485 A8 E-3 48 s
MFS 70 1.18013 |[.31548 20E-3 1.37099 |.16490 A1 E-4 97 s
80 |.180070 |.315527 | .74 E-4 |.371136 |.164888 | .39 E-5 127 s
Table 2 100].180104 |.315558 | .13 E-4 {.371158 |.164913 | .78 E-6 207 s
120].180162 |.315584 | .36 E-5 |.371156 |.164908 | 25 E-6 309 s

80 1.171 313 384 .165 4s
Integral | 120(.1775 3148 3745 .1648 10s
method [150].17886 |.31521 37267 |.16483 17s
200(.17972 |.31547 37160 |.16481 36s
300(.18012 }.31559 37111 .16481 100 s
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sampling points and the sources equally spaced in the x
direction, do not give a fast convergence of the results with
respect to N.

We have developed routines that automatically give
regularly spaced points on &2, and choose the position of
the N sources from the position of the N; sampling points
and from the radius of curvature of &2, with N=N/2.
These points are depicted in Figure 4.

Table 2 shows the results obtained for this grating.
They are compared to those given by a computer code
using an integral method and built by D. Maystre [13]. In
Table 2, N stands for the number of sources in the case of
the MFS, and also stands for the number of sampling
points on the grating profile used for the discretization of
the integral equations in the case of the integral method.
For this example, the computations are faster with the
integral method. But the conclusion could be different for
other gratings. In fact, we have not performed extensive
comparisons between the two methods. We can only say
that for sinusoidal gratings with not so deep grooves, the
computation times are equivalent for the two methods.
There are also some gratings which can be handled by the
MFS and not by the integral method (see section 3.4).

3.2 Echelette grating

Let us consider (Figure 5a) a lossless echelette grating
with the same opto-geometrical parameters as in Ref. [7]:
d = 1.25 pm, total depth h =0.625 pm, blazing angle 45°,
€, = €5 &, = 3 gy, A =0.546 ym, 6 = 15°.

Because our numerical implementation needs the
normal derivative of the fields on &2, the actual grating
profile is replaced by its truncated Fourier series, in which
we keep 40 harmonics. The new profile so obtained has no
edges and is very close to the actual one. Of course, we
have checked the convergence of the results when the
number of harmonics increases.

Table 3 gives the diffracted efficiencies and the energy
balance. The computation time is T=25s for both
polarizations. By reducing the number of sources from
N=50 to N=30, the biggest change over all the

E// H//
From ref. [7] MES MFS
€ ., 0.0053 0.00538 0.00067
€ 0.0219 0.02170 0.00041
e, | 0.0009 0.00079 0.00022
€, 0.0009 0.00091 0.00085
€ 4 0.0243 0.02416 0.00616
€ 3 0.0087 0.00875 0.00428
€2 0.1588 0.15837 0.17379
€. 0.1307 0.13096 0.20990
€0 0.0025 0.00235 0.03375
€, 0.5022 0.50328 0.48732
€., 0.0948 0.09479 0.07654
€3 0.0486 0.04866 0.00679
[£-1]] 0.2 E-3 0.9 E4 0.6 E-3
A? 0.4 E-7 0.2 E-5

Table 3. Efficiencies for the grating of Figure Sa.
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Figure 5a. Dielectric echelette grating.
In this case, N = 50, and N ;= 75.
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Figure 5b. Real part (solid line) and imaginary part
(dashed line) of the c, , coefficients versus the actual
abscissa of the sources. E// polarization.
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Figure 5¢. Same as Fig. 5b, but for H// polarization.

efficiencies is equal to 3 E-3, and T is reduced to 9s.

The comparison with results of [7] shows once more a
The most

perfect agreement. significant differences
between the two methods are the same as in the preceding
section.

Figures 5b and 5c give for both polarizations the real



part (solid line) and the imaginary part (dashed line) of the
complex amplitudes c, ,, of the sources S, radiating the
diffracted field in ©, (Eq. (16)). It can be observed that in
the H// case, these amplitudes are much greater near the
protruding edges. This fact has already been emphasized
in [4]. It becomes less marked when the sources are placed
closer to the profile. Boag et al. have used some additional
sources near the edges in order to get a better
representation of the field near these points. We have not
used an improvement like this.

3.3 Grating of cylinders

For this kind of grating (Figure 6), there are some
minor changes in comparison with the method described
in section 2. The sources which create the diffracted field
are inside the cylinders, and those which create the field
inside the cylinders are outside. The boundary conditions
lead to integrals on the cylinder surfaces.

2b!
2a d
Figure 6.

The case of circular cylinders (a=b) is generally easy to
solve. We have compared our results to those given in
Ref. [6] for infinitely conducting cylinders. Once more, the
agreement is perfect: using the same number of wire
sources as Boag et al., we find exactly the same 5 digits for
all the efficiencies given in Table 1 of [6].

In the case of flattened elliptic cylinders, the location of
the sources assumes a greater importance. It appears
interesting to put more sources near the regions of high
radius of curvature. An example is given in Figure 7 for a
grating of metallic cylinders lying in vacuum, with the

0.06-
0.04
0.02
00+
-0.02
—0.04

—0.06

| I I T T i i
00 002 004 006 008 01 012 04

Figure 7. Wire sources and sampling points used in the
computation (N = 50, N; = 2N). Only one half of the
cylinder is shown.

opto-geometrical parameters: d =0.5, a=0.12, b=0.03,
€, =&, optical index of the cylinders v,=13+i17.1,
A=0.5,0=45°

Table 4 shows, in E// polarization, the convergence of
the solution versus the number N of sources. The reflected
efficiencies in 0 and -1 order, the sum Z of all the
diffracted efficiencies, the normalized error A2 and the
computation time T are reported. From these data, we get
the curves of Figure 8, which clearly show that the
accuracy of each efficiency is closely linked with A2 In
Figure 8, the number of accurate digits is defined by the
quantity (given here for e ,):

 togyg 0 e0(50)) 9)
eo(50) |

N €1 €0 p> A? T

201.2014319 |.4112815 1(0.9331414 [1.02E-03| 6s

251.1953378 {.4093119 ]0.9286433 |8.92E-04| 11s
301.1958446 |.4095595 [0.9294215 |3.05E-05] 19s
351.1958564 |[.4095748 [0.9294324 [8.54E-06| 30s
401.1958586 |.4095772 10.9294456 (3.29E-06| 48s
451.19585927 1.40958086 [0.92944840(1.66E-06] 71s
501.19585898 |.40958116 |0.92944824|7.91E-07 | 106s

Table 4

20 26 30 36 40 456
N

Figure 8. The symbols B, O, and & give respectively the
number of accurate digits for e, ; , e,,, and 2,
whereas the symbols O represent -log, (4.

3.4 Coated gratings

Let us consider a grating covered with a layer. In this
case, we use two supplementary sets of sources in order to
represent the electromagnetic field in the coating. These
sets are placed above and below the coating (lines 73 and
%~ of Figure 9). As before, the sources placed on lines
AR and 5 generate the reflected and transmitted fields
respectively. In the minimization process, the boundary
conditions lead to integrals on both discontinuity surfaces.

In our Laboratory, the codes using integral methods
cannot deal with thin layers (the profiles must have no
interpenetration). It is worth noting that these limitations
do not hold for the MFS.

We consider (Figure 9) a metallic sinusoidal grating
with depth h=0.3 and d = 1 (Eq. (37)). The coating has a
constant thickness t = 0.05 (the two interfaces are y = f(x)
and y=f(x)+t). The optical indices are v, =1



(superstrate), v,=13+17.1 (substrate),
(coating). We take A = 0.7 and 6 = 45°.

With N =40 sources and E// polarization, we obtain in
orders -2, -1 and O the reflected efficiencies 0.1888, 0.3961
and 0.3005, with a normalized error A2 = 8.4 E-6. In H//
polarization, the efficiencies are 0.6264, 0.1063 and
0.0247, with A2=13E-6. The computation time is
T =62s.

These efficiencies are very close to the correct ones
obtained by increasing the number of sources, which are
respectively 0.1887, 0.3962, 0.3006 in E// case, and
0.6268, 0.1063, 0.0247 in H// case.

o.sﬂ
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v; =15

0.3~

024"
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0.0
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00 02

Figure 9. The dots show the 4 sets of N=40 wire sources.
The physical interfaces are in heavy lines.

3.5 Grating profiles given by a parametric equation

In order to describe profiles with various shapes, we
have developed some routines which smooth arbitrary
profiles given by discrete points. The resulting curve is
expressed as a parametric function z(t), whose real and
imaginary parts give the grating profile x(t) and y(t). This
is why, in this section, the grating profile is defined by a
parametric equation which involves the grating pitch d, a
real number t and 2Q+1 complex numbers C, :

d t
z(t)=t—+ Y C, expiq2n—)
T q9=—Q T
Let us first consider (Figure 10) a deep dielectric
grating whose profile is given by:
d=5,1t=20,Q=3,C,=-0.037-10.23,
C,=0.17+i04,C,=-0.022-i1.65 C;=0.2+i4.15,
C,=-0.079-i1.69, C,=-0.083 -10.54,
C;=0.079-i0.025 .
The other opto-geometrical parameters are:
v,= 15 A=4,06=20°
The N, sampling points on &7 are equally spaced, and the
N sources are deduced from these points, taking into
account the radius of curvature of 2 (Figure 10). Table 5
shows the resulting efficiencies for this grating. The
computation time is T =45s. From computations made
with a greater number of sources, we can affirm that all the
digits given in Table 5 are correct.

(40)

v, =1,

We consider now (Figure 11) a metallic grating whose
profile is given by:
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Figure 10. Sampling points and sources for a deep
dielectric grating defined by a parametric equation.
N, =150, N = 73. Two periods are shown.

E// H//
e, | 0.03471 0.00665
€, | 002030 | 000374
e, | 013204 | 0.05479
e, | 015052 | 073095
e, | 0.08801 0.02686
e, | 0.57441 0.17701

T | 0999989 | 0.999998
A2 | 13ET 7.6 E-8

Table 5. Efficiencies for the grating of Figure 10.

=TT T 1 1 1T 1 1T 11
0 1 2 3 4 5 6 7 8 9 1

Figure 11. Sampling points and sources for a metallic
grating defined by a parametric equation. N; = 150,
N = 100. Two periods are shown.

d=5,t=141,Q=5,C,=-10.0483,C_,=-10.114,
C,=i0141,C,=i0.359,C,=i1.118,C,=12277,
C,=i0.901,C,=-i0.566,C,=i10.0163 , C,=10.0344,
C,=-10.009.
The other opto-geometrical parameters are:
v,=13+17.1,0=0°

Figures 12a and 12b give the efficiency curves in E//
and H// polarization. These curves are not realistic because
the index v, has been kept constant. This assumption has
only been made for the sake of simplicity.

=1

v



When the wavelength decreases, we must use more sources
and sampling points. For that reason, routines that
automatically choose the sampling points and the source
location are quite useful. Figure 11 shows the points that
have been used in the range 3 <A <7. For A <3, the
number of points has been doubled. With these values, the
accuracy is better than 10-3 on each efficiency. Due to the
symmetry of the profile and to normal incidence, the
efficiencies in the negative orders are the same as those in
the positive orders.

Table 6 gives the efficiencies for A = 2.4 . They have been
computed with a greater number of sources (N = 300), and
all the given digits are correct.
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Figure 12a. Efficiency curves and sum X of all the
reflected efficiencies in E// polarization versus A.
For 2> 5, only the 0 order exists.
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Figure 12b. Same as figure 12a, but for H// polarization.
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E// H//
€,=¢€, | 0.0477 0.0622
e, =€, | 03514 0.0668
eq 0.0772 0.4604
s 0.8755 0.7183
A2 23E-7 1.2E-8

Table 6. Efficiencies for the grating of Figure 11 and
A=24.

4. COMPUTATION OF THE GREEN'S FUNCTION AND OF ITS
NORMAL DERIVATIVE

The Green's function for gratings g(x,y) (41) and its
derivatives are given by slow converging series (in
particular for low values of y).

1 1 . .
8(x,y) === > —exp(ion,x+if,|y])
2id neZ Ba n "

In this section, we describe some numerical recipes which
make it possible to compute these series with good
accuracy and reasonable computer time. These recipes
have been used for all the computations reported in this
paper. The basic idea (Kummer's transformation) is as
follows: by subtracting from these series their asymptotic
expansions, we get faster converging series. The method is
pertinent if these asymptotic expansions can be put in
closed form.

It is possible [14] to use more sophisticated asymptotic
expansions as those presented here. A faster convergence
can be expected. We have not yet implemented these
possibilities, but they could drastically reduce the
computation time.

For the sake of simplicity, we suppose in this whole section
that the grating pitch d is equal to 2n (a change in the
scale can easily reduce the actual problem to this one).
With this assumption, Eq. (27) becomes

@1

O, =0g+n, “42)

and for high values of n, the asymptotic value of B,
(Eq. (28)) is:

Bn =1|n|+ioy sign(n)+0(%j 43)

where sign(x) is the function equal to 1 for x>0 and to -1
for x<0.

4.1 Green's function

We first take off the factor exp(ic,x) from the series in
“n:

g(x,y) = exp(iogx) S(x,y), 44)
S(x,y) = ﬁ Y Lexplinx+ip,ly]) . 45)

neZ Fn



Let us consider the series:

(9)

Using the relation (which holds true for |z < 1 and z # 1):

zn
> ==-Log(l-2),
neN* n

@7

and with a good choice for the cut of the complex
logarithm (this cut is also the one used by the Fortran
function CLOG), S_(x,y) can be expressed in closed form
(for x # 2m) by:

1 L (x
Se(X,y)= Py Log[Z sn(—z-)[] 48)
We write S(x,y) as the difference
S(X,Y)=Soo(X,Y)"'[S(st)—Sao(X,Y)] s (49)

and we put
S: (x,¥) =5(x,y) -8, (x,¥)

iBoy iBalyl .
B UE N Y D
4inBy 4m _Tu| i, ||

The computation of g(x,y) reduces to that of the series:

iBaly] .
s [ ]
neZ*

51
lﬁn |nl ( )

This series converges faster than g(xy), but the

convergence rate can still be enhanced by putting

S1(x,¥) =8, (%, ¥) +53(x,y) , (52)

o8l lnteo sl |
S,(x,y) = B e
2 nezz:'[ B, |n)
S3(x,y)= X, [l-e_qnlmo Sign(n))lyqﬁ ’ oY
neZ2’ lnl

The series S, converges quickly. As for S;, it can be put in
closed form with the help of (47):

S4(x,y) = -2 Log[z sm(%)] +

%ol Log(l - e"lyhi") +eob Log(l - e—lyl'ix)

(55)

Finally, the computation of g(x,y) reduces to the evaluation
of S_ by (48), S, by (55), and S, by (53).

4.2 Derivatives of the Green's function

We consider now the partial derivatives of the Green's
function. Let us first assume that y = 0 in order to ensure
the convergence of the following series:

og eloo* oy o

== — exp(inx+i

= 2 e Baly)

(56)
neZ Bn
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% _ € Geny) S explinx+ifyly) 67
== sign(y exp(inx+iB, |y
ay 4n neZ !
Let us call S, the series appearing in (57):
Sa(x,y)= D exp(inx+ify,|y]) (58)
neZ
This series can be expressed as:
S4(X,Y)=Ss(X,Y)+Ss(X,Y) (59)
Ss(x,y) = ePoll 4
> oiBaly] _e-(ln}wosign(n))lyl} cinx (60)
neZ*
SG(X,Y) - Z einx—(‘n|+aosign(n))|y[ 61)

neZ'
After some calculations, the series S, can be put in closed
form:
cosh(aly|—ix) —e ¥ cosh(at,|y[)
S¢(x,) = (ooly]—ix) (o]y]
cosh(y) - cos(x)

(62)

In the same way, let us call S, the series appearing in (56):

(03 . .
S7(x,y)= D, —Eexp(inx+if,|y}) (63)
neZ Fn
Noting that the asymptotic value for large n of o /B is:
o — _jsign(n) + o(—lf) , (64)
'311 n
we express this series as:
S7(x,¥) = Sg(x,y) +Sy(x,y) (65)
Ss(x,y) = =0 ol 4
Bo
. (66)
¥ [a_neaanm +isign(m) e—(lnhaosxm)m}em
nez'LFr
Sy(xy)= 3 -isign(me e @Mine (67)

A

After several calculations, the series S; can be put in
closed form:

 sinh(atg|y| - ix) — ¢ M sinh(oc
55 (x,y) =i S ol¥[=i%) (otoly])
cosh(y) —cos(x)

(63)

Finally, the computation of the Green's function
derivatives reduces to the evaluation of the compact terms
Ssand S, , and the summation of the fast convergent series
Sy and Sy

P [Sg+So] (69)
ag eiaox
Foarm sign(y) [Ss +S] (70)

Referring to sections 2.5 and 2.6, it is worth noting that
g(x,y) is the field radiated by an infinite array of currents
flowing in wires which intersect the (x,y) plane at points



(md, 0), with m integer (and d=27n in this section).
Consequently, g(x,y) is infinitely differentiable everywhere
apart from these points: Indeed, the right hand sides of
(69) and (70) are continuous in this domain. In particular,
replacing S, and S, by their expressions, it is easy to verify
that S;+S, vanishes for y = 0. On the other hand, the right
hand sides of (56) and (57) diverge for y = 0. The reader
surprised by this fact can report to any mathematical book
dealing with derivation of series of functions (for y=10,
the convergence of series (41) is not strong enough, and
the series can not be differentiated term by term).

4.3 Summation of the series

The summation of series (53), (60) and (66) is
performed by gathering the terms +n and -n. In this way, it
can be shown that we get a faster convergence. Moreover,
it enables us to perform a convergence check during the
computation of the series itself, and to stop the summation
when a predefined accuracy is reached. We use the
following criterion: three successive partial sums give
three points in the complex plane; when the greater side of
this triangle is less than the desired accuracy, the
summation is stopped.

5. CONCLUSION

The results presented in this paper show that the
method of fictitious sources (MFS) can efficiently deal
with many kinds of grating profiles. In our opinion, the
MFS is interesting from many points of view:;

» The basic idea (represent the field in each domain of the
structure as a combination of fields radiated by adequate
sources) is supported by physical evidence.

« Although its theoretical justification is based on difficult
problems of functional analysis, its numerical
implementation does not need solid mathematical
background.

o The method includes the possibility to check the
accuracy of the results by means of the normalized error
A

+ Many adjustable parameters are available. For instance,
we can choose the nature and the location of the
fictitious sources, i.e. we can choose the basis functions
for the representation of the fields.

This last feature makes the method powerful, but this

freedom also leads to embarrassing situations. Some basic

rules must be picked out in order to automatize the choice
of the sources. We think that the results presented here can
clarify this point. At the present time, we have developed
automatic routines of this type in the case of wire sources.

Without any doubt, the performances of the MFS could be

enhanced by the combination of different kinds of sources.

At the present time, much of the computation time in
our codes is devoted to the calculation of the Green's
function and its derivatives. The algorithms used for these
computations are still not perfect, and the implementation
of the ideas presented in [14] could probably drastically
reduce the computation time.
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