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ABSTRACT 

We consider rigorous theories of diffraction gratings in which the electromagnetic fi eld 
can be considered as infinite series. Numerical implementation of these theories needs 
truncation of the series.' We show that in many circumstances, some properties of the exact 
solution (conservation of energy, reciprocity relations) are also verified by the truncated 
solution. Consequently these properties can not be systematically used as a check o f vali­
dity of the truncated solution. 

1. DEFINITION OF -THE GRATING PROBLEM 

We deal with time harmonic fields represented by complex vectors taking into account ~ 
time+dependen~e in exp(-iwt). We use a rectangular coordinate system Oxyz and denote by ex' 
e y , e z the unlt vectors of x, y, z axes. The permeability is equal to ~o everywhere. Re ­
ferring to fig.l, we consider a structure composed of three regions. The superstrate (y > a) 
and the substrate (y < 0) are homogeneous regions of relative permittivities E 1 and ES 

(E1 is supposed to be real). In the region 0 < y < a, the relative permittivity E is a func­
tion of x and y which is, for fixed y , periodic with respect to x (period d) . Some particu 
lar cases of this periodic structure are for instance the coated grating (fig.2) and the 
"sl~nted"+grating. 1 The grating is illuminated by a plane wave and we denote the total field 
by E and H. We assume for the sake of simplicity that the incident wave vecto r lies in the 
xy plane and that consequently the fields are z independent. We put ko = (u ~. In all the 
paper, Z denotes the complex conjugate of Z, and 0 is the Kronecker symbol. nm 
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Figure 1. The structure we study. 
In the region 0 < y < a, E is, for 
fixed y, a periodic function of x. 

y 

d 

Figure 2. A particular case vf 
fig.l : the coated grating. 

2. THE EQUATIONS VERIFIED BY THE FIELDS 

x 

We recall here the principles of the so-called differential method, 2 in the gencyal cas e 
of an arbitrary polarization. We know that the incident plane wave gives birth to " pseudo­
periodic" fields, 2 which means that any component (say for instance Ex) can be written as : 

( 1) 
n=-oo 

ko = w ~ = 2n/A and K = 2n/d . 

The right member of (1) can be interpreted as a generalized Fourier series, and consequently 
we will say that the Exn(y) are the Fourier coefficients of the field Ex(x,y) . Noticing that 
Ex(x+d, y) = exp(iaod) Ex(x,y), we say that exp(iaod) is the pseudo periodicity coefficient 

2 I SPIE Vol. 815 Application and Theory of Periodic Structures. Diffraction Gratings. and Moire Phenomena /1/ (1987) 



of the field. The Fourier coefficients are taken as the unknowns of the problem. We will 
subsequently denote by IExl the infinite column matrix whose elements are the Exn· This 
matrix is a function of y. The same notation will be used for the other field's compon~nts. 

Elementary calculations detailed in appendix A show that : 

1) The two components Ey and Hy can be deduced from the four others (eq. (AI) and (A2)) 
we will take interest only ln Ex' Ez ' Hx' Hz' and more precisely in the column matrices 

lEX I, I Ez I, IH I and 1 Hz I. x 

2) Maxvlell equations can be written in the form 

\ 

d 
IEx l A(y) 1 Hz I ( 2) dy 

d 
IE z I B(y) IHx l (3 ) dy 

\ d 
!Hx l IEzl 

( 
dy Cry) (4 ) 

d 
IHzl = D(y) IEx l (5) dy 

, 

where A, B, C, D are "infinite square" matrices. 

It is worth noting that the equations (2) to (5) are valid in the sense of distributions,2 
which means that the continuity relations on the surfaces where E is discontinuous (i.e. 
the boundary conditions) are automatically taken into account. In general, matrices A, B, 
C, Dare y dependent, and eq. (2) to (5) have to be integrated between y = 0 and y = a using a 
numerical algorithm. 

3. EXPRESSION OF THE LORENTZ RECIPROCITY THEOREM 
->- -> 

Let us consider two solutions (E, H) and 
-> -> 

(E', H') of the harmonic Maxwell equations 
in a volume V bounded by the closed surface S. 
If ~here is no current distribution in V, and 
if n denotes the unit normal of S, the Lorentz 
reciprocity theorem 3 takes the form 

JJ S (E " H' - E' " H) . ~ dS = 0 • (6) 

If S is the surface depicted in fig.3, then, 
since the fields are z independent : 

->-
• n dl o (7) 

->- ->-
Let us suppose now that (E, H) is a pseudo-

y 

n n 

IA2 :82 
n ' l- d ------,! 

z x 

periodic field->-which can be written as in (1), 
and that (E', H') is another pseudo-periodic 
field whose components can be written as : 

Figure 3. Yl and Y2 can take any value; 

the "walls" (A 1A2 ) and (B 1B2 ) are distant 

from the grating spacing d. 

E' (x,y) = 
x n=-oo 

E' (y) exp(-ia x) xn n (8) S is a cylinder of unit length whose 
crossed section is (A 1B 1B 2A2). 

->- ->- ->- + 
Let us note that (E', H') has a ps~ud~ periodicity coefficient inverse of that of (E, H). 
It is also worth noting that, if (E, H) represents for instance the->-electromagnetic field 
corresponding to the propagating plane waves depicted fig.4a, (E', H') can represent the 
electromagnetic field of another problem where the incident plane wave falls on the grating 
with an incidence - ep . Fig. 4b illustrates this case, supposing p = 1. 

As shown in appendix B, (7) implies that the integral : 

I
d ->- ->- ->- ->- ->-

I = 0 (E " H') - E' " H) • e y dx , is y independent iU.Yl 
dy 0) • (9) 
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Figures 4. Only the plane waves propagating in the superstrate are 
represented. A is the wavelength in the superstrate. The radius of 
the circle is equal to unity. The incidence angles are measured 
anticlockwise, while the diffracted angles are measured clockwise. 

We want to emphasize that the property (9), which is true for the exact solution of the 
problem, still holds true (see appendix B) for a truncated solution which verifies the 
truncated equations (2) to (5). We call truncated solution a solution obtained assuming 
that a Fourier series such as (1) or (8) can be r eplaced by a finite sum, an assumption 
which is obviously necessary for the numerical implementation. 

4. CONSERVATION OF ENERGY 

In this 
In eq. (9) , 
equations, 

se~tio~, we deal with unlossy materials, consequently £(x ,y) is a r eal function. 
(E', H') represents an electromagnetic field solution of the harm~ni~ Maxwell 

which has a coefficient of pseudo periodicity inverse of that of (E, H). It is 
-~ -=F" + ~ 

easy to show (Appendix C) that (E ' = E, H' = - H) verifies these conditions. We make this 
choice in this section, and from (9), we can claim that 

I
d 

+ ~ ~ + + Id + + + 
(E A H + E A H) • e dx = 2 Re (E A H) • e dx, 

o Y 0 Y 
is independent of y. (10 ) 

We recognize here an . f th . h * which as it is well known, leads 
to the famous energy ~:1~~~:1~~i~erio~*~OY~~~~~f;r:~r:~ ~ consequence of considerations 
developed in section 3, it appears that this criterion is verified not only by the exact 
solution, but also by any truncated solution verifying the equations deduced from (2) to 
(5) by truncature. To lay stress on this rather amazing result, consider for instance a 
grating problem in which the incident wave gives rise to N propagating diffracted waves in 
the superstrate. If the approximate numerical solution is obtained by retaining only P 
Fourier coefficients for the fields (P being possibly less than N, and even equal to 1), 
the energy balance criterion will be verified whatever P, provided that the integration of 
eq. (2) to (5) between y = 0 and y = a is accurately performed. Indeed, as claimed by 
Neviere et all,4 and at least for certain integration algorithms, it seems that the energy 
balance criterion is verified whatever the integration step. Anyway, in all the computa­
tions we have done using the differential method, this criterion has been verified with 
a precision of the order of 10- 5 (even when using unreasonable truncatures and very large 
integration steps; cf table 1.) 

* 

** 

Let us remark that (10) involves a spatially averaged (on the grating spacing d) 
Poynting vector. 

i.e. the sum of all the diffracted efficiencies is equal to unity. 
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P = 1 

P = 11 

I 

order 

o 

-3 

-2 

-1 

o 
I 

reflected waves 

angle 

- 59.09° 

- 14.95° 

20° 

70.39° 

efficiency 

0.002497 

0.005353 

0.018351 

0.005751 

0.020611 

1 

I 
! -

1= 
I 
1 

transmitted waves 

angle 

76.41° 

34.89° 

9.90° 

13.18° 

38.90° 

I efficiency 

0.997503 

0.000293 

0.000275 

0.061074 

0.778558 

0.109734 

Table 1. Relative to a sinusoidal grating described fig.2, with: 
e = 0, d = 1 ~m, h = 0.2 ~m, A = 0.6 ~m, 9 = 20°, superstrate 
is 'lacuum, £ = 2.25 for the substrate. P is the number of Fourier 
coefficients us~d to represent the fields. 
Polarization : E is parallel to Oz (TE case) . 
Integration between y = 0 and y = a is performed using 38 steps with 
Runge-Kutta (4 th order) algorithm. 

5. RECIPROCITY 

sum of 

efficiencies 

1.00000 

1. 00000 

In both the superstrate (y > a) and the substrate (y < 0), each Fourier coefficient of 
the fields can be written as the product of a constant (usually called the Rayleigh coeffi­
cient) by a function exponentially dependent on y. 

I 

Case 1 Case 2 

Figure 5. In case I, the grating G is illuminated under the incidence 8 and we turn 
our attention to the pth diffracted wave (angle 8p ). In case 2, G is illuminated 
under the incidence 8' = - 8 . 
The reciprocity theorem claimsPthat the pth diffracted wave in case 2 and the incident 
wave in case 1 propagate in opposite directions, and that the efficiencies in the pth 
order are the same (sayeR) in both cases. The theorem holds also for a transmitted 
order, when dealing with lossless substrates. 

TE TM 

3 
case 1 0.1190 0.0619 P = 2 0.1179 0.0674 case 

5 
case 1 0.1104 0.0627 

P = 2 0.1119 0.0644 case 

P 7 
case 1 0.109741 0.06312 = 2 9·109727 0.06322 case 

11 case 1 0.109606 0.063275 P = 2 0.109685 0.063295 case 

Table 2. Relative to a sinusoidal grating described fig.2, with: e = 0, d = 1 ~m, 
h = 0.2 ~m, A = 0.6 ~m, superstrate is vacuum, £ = 2.25 for the substrate. The 
notations are those of fig.5, for the transmitted wave in the first order (p = 1). 
In case I, 8 = 20°. In case 2, the incident field comes from the substrate, with 
9 ' = 38.904°. P is the number of Fourier coeffi2ients us~d to represent the fields. 
We denote by TE (resp. TM) the situation where E (resp. H) is parallel to Oz. The 
table gives the values ofel. Integration between y = 0 and y = a is performed using 
40 steps with Adams-Moulton (initiated by Runge-Kutta) algorithm. 
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For y > a (resp . y < 0) (see figure 1), it turns out that the integral appearing in (9) can 
be written as a finite sum. Each term of the sum contains the Rayleigh coefficients corres­
ponding to the only prop~gating waves of the incident and reflected (resp. of the transmit­
ted) fields. Using for (E', H') a field associated to an incident plane .... wa~e which falls on 
the gra ting with the same direction as one of the diffracted waves of (E , H) (as explained 
in section 2 and fig .4), it is easy to deduce the well known reciprocity theorem (fig.5). 
These considerations are developed i n detail by D. Maystre for a simple case of polariza­
tion in Progress in Optics,S and by A. Roger in ref. 6. 

Let us now consider truncated fields, described in the superstrate and in the substrate 
by truncated Rayleigh developments. From section 3 we know that (9) still holds true. Con­
sequently, provided that the truncated developments contain the o r de rs represented fig.5.1 
and fig.5.2, the reciprocity theorem still holds true. We may confess that our numerical 
computations does not perfectly agree with this prediction (cf table 2). Up to now, we have 
not been able to explain this discrepancy satisfactorily (it could perhaps be due to the nu­
merical process). 

6. THE SLANTED GRATING 

In this section we show that the problem of a slanted grating 1 described fig.6, even 
when solved using an eigenvalues problem, is a particular case of the differential method, 
and that the results of sections 3, 4, and 5 still hold true. 

In the region 0 < y < a, the permittivity 
can be written as : 

.... .... 
£(x,y) = L £n(y) exp(inKx) = f (L . r) = 

n 

f (Lx. x + Ly . y) , 

where f is a periodic function of period 
(Lx.d). It is easy to show that, in these 
circumstances, the Fourier coefficients of £ 
take the form 

where 
1 

Lx·d J

L .d 

o
x f(t) exp(-in ~ t) dt 

Lx 

is independent of y, and ~ = K L IL . Y x 

Figure 6. The slanted grat ing 

.... 
For the sake of simplicity, let us suppose that the field is polarized E II OZ, and put 

u(x,y) = Ez(X'Y) = ~ un(y) exp(ianx) 

Then, system (A 3 ) to (A G ) is equivalent to 

~u(x,y) + k o
2 £(x,y) u(x,y) = 0 

which implies, for any n 

m 

Putting now un(y) 

WOO + 
n 2in~ w' -n 

wn(y) exp(in~y), we obtain 

(n2~2 + a n
2) wn + k o

2 L c n - m wm 
m 

which can be written in matrix form as 

IW"1 R Iw'l + S Iw I ' 

o , 

where Rand S are y independent infinite matrices whose elements are 

Rnm = - 2i~n 0nm ; Snm = (n2~2 + a 2 ) 0 - k 2 C n nm 0 n-m 

It is important to note that (11) is strictly equivalent to the system (2) to (5). 

We can also write (11) in the form : 
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/w ' / 

/w" / 1*1 
Iwl 
Iw'l 

(12) 

Comparing (12) to its equivalent expression (2) to (5), it is worth noting that now the 
square matrices are y independent. This remark allows us to reduce the solving of (12) to 
an eigenvalues problem, avoiding so a numerical integration. Anyway, except for their nume­
rical treatment, the problems are strictly equivalent. The results of sections 3, 4, and 5 
are still valid, . and we agree with the paper by Russell.? 

7. A LAST EXAMPLE 

Obviously , the previous considerations are reminiscent with a question which we refer to 
during the last SPIE Symposium. In a paper by R. Petit, J.L. Suratteau and M. Cadilhac,B 
we had to write the continuity of two functions on a bounded interval, which is equivalent 
to express the vanishing of two other functions (i.e. their jumps on this interval). This 
was done by projecting on a convenient basis in order to get an algebraic system. We can 
use either the same basis or two different basis. In the first case, the energy balance is 
not automatically satisfied after truncature. On the other hand, when using two different 
basis as done by the Australian group of Sidney University, 9 we are led to the opposite 
conc lusion . 10 In our opinion, this is an important point since the energy balance is often 
used as a check of validity of the numerical results obtained after truncature. 

APPENDIX A 

-+ .... 
E and H verify the Maxwell equations 

-+ + + + 
curl E = i Wllo H curl H = - iw£o£ E 

Putting Z 0 = ~ , we get 
0 

) 
Zo 1 ClH z 

E - i 
~ ax y £ 

i ClE z 
H 

koZ o ax y 

ClE
X Zo Cl 1 ClH z 

ay- - i 
~ Clx - ax ) - ikoZo H 

£ z 

ClE z 
i ko Zo Hx ay-

ClH i ClLE ko x z + i - £ E 
Cly koZ o Clx L 

Zo 
Z 

Taking into account the periodicity of £ and 1/£, we write their Fourier series 

+00 
£(x,y) I 

n=-oo 
£ (y) exp (inKx) 

!1 

1 "£ ) (x,y) 
n=-oo 

[~] (y) exp (inKx) 
n 

(AI) 

(A2) 

(A3) 

(M) 

(AS) 

(A6) 

(A7) 

(AB) 

Replacing in (A3) to (A6) the field's components by their expressions (1), £ and 1/£ by 
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their expressions (A7) and (A8), and with a projection on the exp (ia nx) basis, we obtain 
for any value of n : 

dE +00 Zo 

[ f J n-m -
xn I ~ 

[ i 
ko a a i koZoo ] H 

m=-oo n m nm zm 
(A9) 

dE zn i koZ o ~ 
H xn 

(AID) 

dH +00 
i k xn I [- 2 0 i 0 

~ koZ o 
a n + Z; £ Ezm m=-oo nm n-m 

(All) 

dH +00 k zn L i 0 

~ - Z; £ E 
m=-oo n-m xm 

(A12) 

which can be written in matrix form 

d 
IEx l A(y) IHzl dy 

(AI3) 

d 
IE z I B IHx l dy 

(A14 ) 

d 
IHx l C (y) IE z I dy 

(A15) 

(AI6 ) 

where A, B, C, D are infinite matrices whose elements are given by 

Anm(y) i 
Zo 

a n a m [iL_m 
- i koZoO nm ko 

(AI7) 

B i ko Z oOnm nm 
(AI8) 

Cnm(y) 
i 2 0 + i 

ko 
koZ o 

a Z; £ n nm n-m 
(A19) 

Dnm(y) 
iko 

£ To" n-m 
(A20) 

APPENDIX B 

In this section we propose U$ to calculate the quantity 

J = J (i A ;, - ~, A ~) • ~ dl (notations are exposed in section 3) 
AIBIB 2A2 

in terms of the Fourier coefficients of the fields. 

-+ -+ d' t of (4-E " 4-H ,) Let u be a component of (E, H) an u a componen 

u(x + d, y) = exp(iaod) u(x,y) , 

u' (x + d, y) = exp(-iaod) u' (x,y) , 
4-

eq.(l) and (8) show that: 

(Bl) 

(B2) 

-+ -+ 4- This implies that which means that E /I. H' and E' /I. H are d periodic with respect to x. 
the contributions of segments (B 1 B 2) and (A 2A I ) cancel each other, and J takes the form : 

tB 

-+ -+ 4- 4- 4-

J A2B 2 

4- 4- -+ 4- 4-
I (y 2 ) , (B3) J = (E /I. H' - E' A H) .e dl - (E /I. H' - E' A H) .ey dl = I (y I) -

y 
1 1 

with f
d

o 
I(y) = [E(X,y) A H' (x,y) - E' (x,y) /I. H(x,y) ]'~y.dX . (B4 ) 

8 / SPIE Vol. 815 Application and Theory of Periodic Structures. Diffraction Gratings. and Moire Phenomena 11/ (1987) 



)0. 

Let us now calculate ~ 
dy developing the vector-products, we find : 

lliYl. f: [( 
aEz aE' aH' (lH (lEx (lE' 

H' z 
Hx) +(E x E' x 

( x 
dy ay - ay ay - ay) - ay H' - ay Hz) x z z z 

(lH' 
(lH ] - (E z - E' a/) x ay x 

(lE (lE' dI 3 (y) 

J: Let us stud y for example the quantity ( 
x H' +~ Hz) dy - ay (ly dx 

Using eq. (1) 

dI 3 (y) 

dy 

and (8) , we 

L ( -
n,m 

get 

dExn dE' 
H' + xm H ) i(n-m)Kx d -ay- zm -ay- zn ex. 

Noting that f: ei(n-m)Kx dx d 0nm ' we obtain 

dI 3 (y) 

dy d L 
n 

dE dE' 
( xn H' + ~ H ) - -ay- zn dy zn . 

dE 

z 

-

dx 

. 

We have shown in Appendix A that xn 
oy L Anm Hzm ' In the same way, we find that 

m 

dE' xn 
I. A' H' where dY m nm zm 

A' 
. Zo 

a a [%J m-n 
ikoZoO nm 

1.- -nm kr, n m 

Eq. (B6) becomes 

dI 3 (y) 

dy d L - Anm H H' + A' H' H zm zn nm zm zn n , m 

+00 +00 
d L L (-

n=-oo m=-oo 
Anm + A~n) Hzm H' zn 

(B5 ) 

(B6) 

(B7) 

(B8) 

It is now a trivial matter to verify that Anm A~n and that consequently each term of 

the double series in (B8) vanishes. The same,· can be done for the three other terms 
in (B5) which also vanish. The important result is the following: the quantity I(y) is 
independent of y even if the developments of the fields in generalized Fourier series are 
truncated. 

APPENDIX C 
.... .... 

a) Each component of (E, H), denoted for instance by u(x,y) expresses as 

u(x,y) 

u(x,y) 

L un(y) exp(ianx) ; and consequently (an is real) : 
n 

-..-+ -+ -+ 
b) If (E, H) verifies the harmonic Maxwell equations : curl E = iw~o H 

-+ -+ :;: .... 
curl H - i WEoE E, it is clear that (E, -H) verifies the same equations in the case where 

£ is real. 
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