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By letting water drops fall through rings into cans, high 
voltage can be spontaneously generated with no external 
electrical excitation. Previous work concerning this type of 
electric influence machine for de and three-phase ac high 
voltage generation is extended to include multiphase, multi­
frequency operation by considering N streams and N cans. 
A distributed equivalent circuit representation 1:S used to 
calculate the natural frequencies of the system, where it is 
found that many overstable modes are present. Experi­
mental observations with up to five cans are presented. 
This device can serve as a model for phenomena concerned 
with atmospheric electricity. 
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FIG. 1. Falling water drops spontaneously produce dc high 
voltage (10-20 kV) with no electrical inputs. 
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1. INTRODUCTION 

In 1867, Lord Kelvin! (then Sir W. Thomson) 
described his famous water dropper, where the 
falling of liquid drops was responsible for the 
generation of high voltages with no external 
electrical excitations. This electrohydrodynamic 
dynamo falls into the class of electrical influence 
machines similar to the classic Wimshurst 
machine, replacing the rotating metal disks by 
falling water drops. Kelvin used the dropper as a 
means of modeling atmospheric electricity since 
the presence of air, water, and high potential are 
the basic ingredients of a thunderstorm. 

A similar apparatus is part of Moore's traveling 
electrostatic show, which Moore comments as 
being his most popular demonstration. 2 This 
device is also discussed and analyzed by Woodson 
and Melcher.3 In their discussion, Lord Kelvin's 
device consists of two cans well insulated from one 
another, two pieces of wire and a pair of pipettes 
connected to a source of water as shown in Fig. 1. 
This apparatus spontaneously generates from 
10-20 kV, which can be measured by a high 
impedance kilovoltmeter. The voltage builds up 
until there is electrical breakdown between the 
cans, or the electric attractive force deflects the 
drops until they hit the rings. 

The generated voltage is maintained by the 
reciprocal arrangement, whereby each charge 
collector (the cans) is also the charge inducer (the 
rings) for the other. Any charge unbalance on the 
rings, either due to random fluctuations or perhaps 
to an initial charge purposely placed on the ring, 
will induce opposite charges on the stream falling 
through the ring. The resulting charged drops 
give up their charge to the can which then com­
municates this charge to the other inducer ring 
where the process is repeated, such that the net 
charge on the original inducer ring has been 
increased. This positive feedback results in the 
voltage build-up . 

For voltage build-up to occur, the following 
conditions must be met; 

1. The cans must be well insulated from one 
another, to minimize leakage currents. 
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FIG. 2. (a.) Each of the N identical cans and streams are cross connected to adjacent cans. The Nth can is coupled to the 
first stream, completing the loop. (b) The equivalent circuit representation shows that the potential of any node is 
related to the potentials of the preceding and succeeding nodes. 

2. The stream must break into drops in the 
vicinity of the rings, to maximize the capacitive 
coupling between the rings and the forming 
droplets. 

3. The liquid must be sufficiently conducting 
such that the induced charge relaxes to the 
surface of the stream before it breaks into drops. 
Any conducting liquid such as water meets this 
condition. In fact, even solid conducting balls can 
be used. 

4. Once the drops are formed, the net charge 
on each drop must be conserved. The air must be 
sufficiently insulating such that its electrical 
relaxation time is much longer than the time 
required for a drop to reach the container below. 

The two-can dropper so far discussed has 
voltage build-up at an exponential rate with no 
oscillations. A three-can dropper will produce 
self-excited three-phase ac high voltage. This 
version is included in the film by Melcher,4 and is 
denoted as Euerle's dynamo, after the original 
inventor of this device. 5 

In addition to introducing many readers to the 
classic Kelvin dynamo and Euerle's ac modifica­
tion, devices that this writer feels should be more 

widely known, it is the purpose here to generalize 
by considering "N cans" as a means of producing 
multiphase multifrequency ac high voltage. As a 
model of the atmosphere, a continuum of charge 
collectors and inducers can be imagined if we 
let N---" 00 with the size of the cans becoming in­
finitesimally small. In processes such as electro­
static printing, paint spraying, and precipitation, 
an external high voltage source is needed. In 
configurations, similar to those presented here, 
the particles themselves can genera te the necessary 
high voltage, eliminating the need of an external 
power supply. 

In its simplicity, the analysis to be presented 
here yields a wealth of information. In the words 
of Kelvin: "The mathematical theory of the 
action ... is particularly simple, but nevertheless 
curiously interesting."! Researchers in the area of 
atmospheric electricity should consider these 
interactions as fundamental building blocks in 
understanding more complicated phenomena. 
These self-excited dynamos illustrate how nature 
can arrange charge separation with no electrical 
driving forces. Perhaps such mechanisms are at 
work producing the known charge stratifications 
in clouds. 6 
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Our approach will be to find an equivalent 
circuit representation for the system similar to 
that of Woodson and Melcher3 consisting of dis­
tributed resistances, capacitances, and dependent 
sources. Since the differential equations which 
govern such systems are linear constant coefficient 
in time, exponential solutions of the form eot can 
be assumed. To examine for stability, we simply 
solve for the natural frequencies s. If the real 
part of s is positive, the system is self excited, 
such that any perturbation will grow at an ex­
ponential rate. The imaginary part of s yields the 
oscillation rate of the resulting overstability. 

For the special cases of N = 2 and N = 3, we will 
recover the results of Kelvin and Euerle. 

II. EQUIVALENT CIRCUIT REPRESENTATION 

Figure 2(a) illustrates the schematic configura­
tion of N coupled cans and streams. Note that the 
Nth can is coupled to the first stream, completing 
the loop. For a net charge to be induced on falling 
droplets as they pass near a charged ring, the 
stream must break up in the immediate vicinity 
of the rings, as at this position, with the forming 
drop still tied to the main stream, charge can flow 
onto the droplet from the reservoir. The drops 
transport this charge to the can below which, 
because it is tied to the ring that encircles the next 
stream, induces charges on that stream also. This 
effect is successively transmitted to each stream, 
eventually reaching the initial stream which again 
finds charge induced such as to add to the initially 
induced charge. This regenerative feedback is the 
reason for the voltage build-up. It is important to 
note that the water reservoir remains neutral, as 
when charge is deposited upon a stream, an equal 
but opposite charge appears upon another stream. 

If the drop is already dissociated from the 
stream as it passes near the ring, no net charge 
can be induced, as through the insulating air, no 
current can flow to deposit charge. If the stream 

III. MATHEMATICAL ANALYSIS 

breaks up into drops past the rings, the droplets are 
uncharged. If the stream just enters the cans 
without breaking into drops, it acts like a short 
circuit, keeping the cans at ground potential. 

In deriving the equivalent circuit of Fig. 2 (b) , 
we consider in particular the drops falling into the 
ith can, where the induced charge on each drop is 
proportional to the voltage difference between the 
ring and the water in the pipette which is at ground 
potential, 

(1) 

where the constant of proportionality CD is the 
capacitance between the ring and the water 
droplet just as it breaks off from the stream. 
(There is no droplet before it breaks off, and hence 
no well defined capacity.) The minus sign is 
because image charges are induced on the stream. 
Because n drops/second fall into the can, the 
charge transport is modeled by a current source of 
value 

(2) 

The cans as charge storers are represented as 
capacitors C to ground. The resistance R represents 
the leakage resistance to ground. The capacitance 
CL represents the capacitance between adjacent 
cans plus the capacitance of a load, such as an 
electrostatic voltmeter. RL represents leakage 
resistance between cans. The essential ingredients 
of self-excitation can be treated by a simpler 
idealized model with no losses where 

(3) 

but for generality we consider finite values for 
these parameters. 

At the ith node in the equivalent circuit of Fig. 2 (b) , the algebraic sum of the currents into the node 
must sum to zero, resulting in the general relation 

198 / February 1973 
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where since the elements of the equivalent circuit are linear time invariant, we have written the voltages 
in the form 

Then the circuit equations of (4) can be put in the form 

A -D 0 0 0 

-B A -D 0 0 

0 -B A -D 0 

0 0 -B A -D 

o o o o o 

-D o o o o 

where 

A = 1+[2R(RLCLs+l)/RLCRCs+l)], 

B= [-nCD + (R LCLs+l)/RL ][R/(RCs+l)], 

D= [(RL CLs+l) / (RCs+l) J(R/RL ). 

Because all t.he rows are alike in form, t.he 
general difference equation for the ith row is 

(6) 

Equation (6) is a linear difference equation with 
constant coefficients, for which standard solutions 
can be assumed of the form7 

(7) 

which when substituted into (6) yields 

0 0 -B VI 

0 0 0 V 2 

0 0 0 Va 

0 0 0 V4 =0. (5) 

-B A-D 

o -B A 

Equation (9) indicates that there are two 
characteristic solutions for (6). As with linear 
constant coefficient differential equations, the 
most general solution is the superposition of all 
allowed independent solutions, 

(10) 

The two conditions which (10) must obey are 

VO=VN' 

VN+1 = Vb (11) 

which can be checked in (6) with i=1 and i=N. 
Using (11) in (10), we obtain the coupled relations 

Kl(I-A1N) +K2(I-A2N) =0, 

K1A1(I-A1N) +K2A2(I-A2N) =0, (12) 

-B+AA-DA2 =0, (8) which for nontrivial solutions yields 

with solutions 

A1.2= (A/2D) ±[(A/2D)2- (B/D) J1/2. (9) 

A1N = 1; 

A2N = 1; (13) 

AJP Volume 41 I 199 
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Either case in (13) can be treated simultaneously by using (9) to write 

Al,2= (l)1IN = (A/2D) ±[(A/2D)2- (B/D) J1 /2 

or 

(1)2IN - (A/D) (l)l/N + (B/D) =0. 

Using the definitions of (5), we solve for the natural frequencies to be 

[1- exp( j27rr/N) J2- exp(j27rr/N) (RdR) -RLnCD 
8= 

RL{ C exp( j27rr/N) -CL[I- exp( j27rr/N) ]21 
r=I,2, "', N, (14) 

where we use the fact that 

(l)l/N = exp( j27rr/N); r=I,2, "', N. (15) 

From (13) we also obtain the relative phases of adjacent cans as 

(16) 

To examine the conditions for self-excitation and oscillation frequency, we must examine the real 
and imaginary parts of (14). 

For the idealized model, when the loss less conditions of (3) hold, (14) reduces to 

r=1,2, "', N. 

IV. DISCUSSION OF RESULTS 

N = 2-Kelvin's Dynamo 

Consider Kelvin's dynamo, for which N =2, then (14) and (16) yield 

-4- (RdR) +RLnCD 
R L(C+4CL) 

82= _[R-l+nCD J/C; 

(17) 

(18) 

Note that the second root of (18) always decays, while the first root allows a growing solution with 
no oscillations if 

nCD> (4/RL) + (I/R). 

This indicates that if the leakage is significant, voltage buildup will not occur. 

N = 3-Euerle's Dynamo 

Consider now Euerle's dynamo, for which N =3, in the limits given by (3). Then from (17) 

81= (-nCD/C) (-t+tV3j); 

82= (-nCD/C) (-t-tV3j); 

83= -nCD/C; 

V3/V2 = V2/V1 = exp(j47r/3), 

V3/V2 = VdVI = exp (j27r/3), 

V1 = V2 = V 3• 

(19) 

(20) 

The first two roots which are complex conjugates represent overstability while the third root strictly 
decays. Note the three phase relationship between the voltages for the growing modes. If leakage 
became significant, a condition similar to (19) would be necessary for voltage build-up to occur. 
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N Arbitrary 

In general, for an arbitrary number of cans, 
there are many growth rates and oscillation fre­
quencies. Since random fluctuations will excite aU 
modes, that mode with the fastest growth rate 
will dominate. We restrict our discussion now to 
the lossless case with conditions given by (3), so 
we focus attention on (17). 

If we have an even number of cans, note from 
(17) that the fastest growing mode occurs when 

r=!N; 

This mode is purely exponential with no 
oscillations, and the voltages alternate in a posi­
tive- negative sequence between adjacent cans. 
However, if we measure the potential difference 
between alternate cans, the potential difference 
due to this fastest growing mode will be zero, thus 
allowing measurement of oscillatory modes with 
slower growth rates. With an odd number of cans, 
the fastest growing modes will be for 

r =!(N±l) ; 8= (nCD/C) exp[=FjC,,/N) ]; 

(22) 

with frequency of oscillation 

Wo= (nCD/C) sinC,,/ N). (23) 

V. EXPERIMENTAL OBSERVATIONS 

A four-can version was built, depicted in Fig. 3. 
The maximum voltage build-up between cans was 
in the range of 10- 20 kV. Because of the valves, it 
was possible to operate with either N = 2, N = 3, 
or N =4. Voltage build-up was measured with an 
electrostatic kilovoltmeter and could be observed 
visually by the spreading of the drops. If electrical 
breakdown did not occur, the voltage was limited 
by the attractive force on the drops on the rings. 
At limiting voltages, the drops would spiral about 
the rings. 

With strict exponential growth with no oscilla­
tions, the drops would spread and then spiral in a 
steady-state fashion until voltage breakdown 
occurred, and then the cycle would begin again. 

High Voltage Generation Using W ater Droplets 

FIG. 3. By adjusting the valves this four-can version can 
be operated with either N =2 (dc), N = 3 (three-phase ac), 
or N =4 (two-phase ac or de). 

With three cans, each stream would spread, spiral, 
and contract in a three phase 120° sequence. For 
comparison, an identical fifth can and stream was 
added to the device in Fig. 3. The ratio of fre­
quencies for the five-can version to that of three 
cans, assuming the geometry and drop rate are the 
same, are given by the imaginary part of (17) for 
those roots which are in the right-half s plane, 
also given by (23) 

15/13= sin 36°/sin 60°=0.68. (24) 

It was measured that 15= (1/184) sec- 1 and 
fs= (1/ 125) sec-1 yielding the ratio 

(15/is) measured >=:::::0.68 (25) 

in agreement with (24) . 

AJP Volume 41 / 201 
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Actual values for CD and C are difficult to 
measure because of the irregular geometry, but it 
is safe to assume these values to be in the low 
picofarad range. Typically the number of drops 
falling per second was on the order of 10 (n = 10) , 
as measured by a strobotac. Thus from (23) and 
the measured frequencies, this device has CD < C. 
It is also difficult to measure the resistances R 
and RL as these values are usually due to leakage 
from moisture and dirt, as well as the resistance 
due to the supporting structure. However, if we 
assume CD~lO pf with n= 10, the leakage re­
sistance must exceed 1010 [2, as determined from 
(19). 

With four cans, the natural frequencies are 
either pure real or pure imaginary. Experi­
mentally, the drops would behave in the same 

1 W. Thomson (Lord Kelvin), Proc. Roy. Soc. (London) 
16, 67 (18671. 

2 A. D. Moore, Electrostatic8 (Anchor-Doubleday, New 
York, 1968), p. 175. 

a H. H. Woodson and J. R. Melcher, Electromechanical 
Dynamics (Wiley, New York, 1968), p. 388. 

4 J. R. Melcher, "Electric Fields and Moving Media," 
film produced for the National Committee on Electrical 
Engineering Films by the Educational Development 
Center, 39 Chapel St., Newton, Mass. 02160. (Distributed 
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steady spiraling manner as for two cans, indicating 
the dominance of the pure exponential mode. 
However, the voltage difference between any two 
opposite cans (cans one and three, or two and 
four) was oscillating as expected. 

A bigger three-can dynamo was built using 20 
gallon cans, similar to that shown in Melcher's 
film.4 Here voltages were in the 30 kV range with 
frequencies on the order of 1 Hz. 
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