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To formulate general results concerning the validity of the Rayleigh hypothesis, we first introduce 
a definition of the foci and antifoci of an analytic curve. Then, we state two lemmas on the 
properties of an analytic or harmonic function satisfying given conditions on an analytic curve. 
This allows us to predict the behavior of the analytic continuation of the field in electrostatics. The 
use of a conformal mapping permits the generalization of this method in electromagnetics and 
acoustics. As a consequence, we are able to predict the limit ofvalidity of the Rayleigh hypothesis. 

I. INTRODUCTION 

At the beginning of the century, the Rayleigh method 
had been the first attempt at solving the problem of diffrac- 
tion by gratings.' This method has been used for many other 
problems of electromagnetism and acoustics. Rayleigh made 
an assumption, the so-called Rayleigh hypothesis, which re- 
mained unquestioned for almost 50 years, but provoked con- 
siderable controversy thereafter. At present, there is no 
doubt that the Rayleigh hypothesis is neither always valid, 
nor always invalid. The interested reader may consult recent 
reviews in this field.'p3 

However, the controversial aspect of the Rayleigh hy- 
pothesis has not died down, due to a second question: in what 
conditions may the Rayleigh theory be used to determine the 
field diffracted by a scattering object, even though the Ray- 
leigh hypothesis fails? In this paper, we are not concerned 
with this second question. Our aim is to establish a math- 
ematical property which allows us to state a very simple and 
general result concerning the validity of the Rayleigh hy- 
pothesis in electromagnetism and acoustics, when the profile 
of a diffracting object is given by an analytic curve. To this 
end, we first deal with the Neumann and Dirichlet problem 
in electrostatics, since it has been shown that the validity of 
the Rayleigh hypothesis in electromagnetism or acoustics is 
linked with the properties of the analytical continuation of 
the field in the corresponding problems of  electrostatic^.^ 

II. DEFINITION OF THE FOCI AND ANTIFOCI 
OF AN ANALYTIC CURVE 

The notion of foci is well known for conics. Here, we 
propose a generalization of this notion to analytic curves. 
Moreover, we introduce the notion of antifoci. 

First, let us recall the definition of an analytic curve r :  
let D, be a domain (open connected set) of the complex t 
plane and I C D ,  a real interval. An analytic curve r is the 
image of 1 through a transformation 

f being a nonconstant analytic function defined in D, . 
Now, if there exists a point to E D,, such that to 

E D, , satisfying 

5 '(to) = 0, (2) 

f 'Fo) #o, ( ' being the derivative of {, (3) 
the images 2, = f (to) and io = ( Po) of to and to will be called 
the associated focus and antifocus of r ,  respectively. 

For instance, let us consider the case of a parabola given 
by the function 

z = ( ( t ) = 2 t + i t 2 .  (4) 

Its focus zo will be obtained by setting 

( '(to) = 2 + 2it0 = 0, (5) 
which means that to = i, thus 

zo = i, ( 6 )  

Zo = - 3i. (7) 

Finally, the antifocus is symmetrical to the focus with re- 
spect to the directrix of the parabola. 

More generally, it can be verified that the notion of fo- 
cus given here identifies with the classical one in the case of 
conics (except for a circle!). When the analytic curve r is 
given by the equation 

G ( x , ~ )  = 0, (8) 

where G is an analytic function of the variables x and y 
(z = x + iy), it can be shown that a focus zo is obtained by 

zo = x1 + iy,, (9) 
where x, and y, are complex numbers satisfying the system 

In addition, the associated antifocus is given by 

io = z1 + GI. (12) 
We shall set 

where x,, yo, go, jO, the Cartesian coordinates of the focus 
and the antifocus, are real. 

We define a focal line as the image ( (L ) of a curve L (a) 
joining to to 5 in D,, (b) symmetrical with respect to the real 
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axis, and (c) intersecting I. For example, in the case of a 
parabola, the segment [z,, Z,] is a focal line. 

A domain D will be called a focal domain if 
(a)D C D, = 5 (Dt ) and (b) whenever D contains an antifocus 
2,, it includes an associated focal line. 

It is interesting to notice that with the new variables 

z = x - iy, (14) 
the focus is given by 

a~ aH - = 0  and -#O, ai a2 
with 

H (z, 2) = G (x,y), 
It is worth noting that a system of parametric equations simi- 
lar to (1) may be deduced from (10) by integrating the system 
(Hamilton's canonical equations!) 

with arbitrary initial conditions. 
With the new variables defined in (13) and (14), these 

equations become 

Ill. LEMMAS 

Lemma I: An analytic curve r being given, let F (z) be an 
analytic function in a focal domain D and 5, an antifocus in 
D. If, for z E r n D, F (z) is real, then F '(5,) = 0. 

Proofi The function 

f J ( t )  = F(S  (t)) (21) 
is analytic in the connected component of5 - '(D ) which con- 
tains to,?,. If t E I ,  e (t ) is real, thus 8 '(t ) is real, too, and there- 
fore, from a well-known symmetry property, 

e lt0) = m. (22) 

But, 

6' '(to) = g '(t0)F1(zo), (23) 

e I(?,) = g ' F 0 ) ~  '(z0), (24) 
and from (2) and (3) 

F '(2,) = 0. (25) 

Lemma 2: An analytic curve r being given, let u(x,y) be 
a harmonic function in a focal domain D and 2, an antifocus 
in D. If, for z E r ,  u(x,y) (or its normal derivative) vanishes, 
then 2, is a saddle point of u(x,y) 

Proof D can be supposed to be simply connected with- 

out loss of generality. There exists an analytic function F (z) 
such that 

where F(z) fulfills the conditions of Lemma 1. Hence 
F1(Z0) = 0, which is equivalent to (26). 

IV. EXAMPLES OF APPLICATION 

(1) Let D be a domain intersecting an analytic curve r 
and containing an antifocus 2,. Let F be analytic in D and 
real on r. Then, an analytic continuation of F cannot be 
made along a focal line up to the associated focus z,, unless 
F '(Z0) = 0. 

Such an analytic continuation can be deduced from the 
symmetry property of F(5 (t )). 

(2)Let us consider a Jordan domain R with analytic 
boundary r a n d  a conformal mapping Z = 4 (2) of the exteri- 
or of r on the exterior of the unit circle C (Fig. 1). We have 
locally q5 (z) = exp(iF (z)), where Fis real o n r .  Moreover, F' is 
analytic and different from 0 outside R + r. This entails 
that the foci o f r  located in R are singularities of the analytic 
continuation of 4 along the focal lines. 

(3) A third example consists of the homogeneous Dir- 
ichlet and Neumann problems for the Laplace equations. 

Now, we shall restrict ourselves to the case where r 
separates the space in two complementary regions 0, and 
n2. These regions are unbounded if r goes to infinity, but 
one of them, a,,  is bounded (the interior region) if r is a 
Jordan curve. 

We consider a harmonic function u(x,y) defined in a, 
and which satisfies a homogeneous Dirichlet or Neumann 
condition on r. If 0, contains an antifocus Z,, then the con- 
tinuation of u across r along a focal line will not be possible 
at the associated focus z, if (au/dx)(%,,j,)#O or (du/ 
~Y)(~O,JO) # 0. 

Indeed, if this continuation were possible, u(x,y) would 
be harmonic in a focal domain containing z, and Lo, a fact 
which entails that the partial derivatives of u with respect to 
x and y vanish at the point (%,$,). 

V. VALIDITY OF SOME EXPANSIONS OF THE FIELD 
USED IN ELECTROMAGNETICS AND ACOUSTICS 

We consider the Helmholtz equation 

V2u(x,y) + k 'u(x,y) = 0, in n , ,  (27) 
with the homogeneous Dirichlet or Neumann conditions on 
r [notations of Sec. IV, example (3)]. 

It  has been shown5 that the use of a conformal mapping 
Z = @ (2) which maps R, on the upper Z half-plane or on the 

FIG. 1 .  A property of the conformal 
mapping. 
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exterior of the unit disk allows one to define an equivalent 
problem in the Zcomplex plane, where v(X, Y) = u(x,y) satis- 
fies the Dirichlet or Neumann boundary conditions on the 
real axis or the unit circle and a new Helmholtz equation 

We have already seen that the continuation of @ in R, is 
singular at a focus zo of r. This entails that even though 
v(X, Y )  is regular in the upper half-plane, we can expect a 
singularity of the continuation of u(x,y) in a, at the focus 
since d Z  /dz is singular at this point. Of course, this rule is 
not general since we have no information about the value of 
v(X, Y )  at the image of the focus. 

It is clear that our criterion gives a means to locatesome 
of the singularities of the conformal mapping. Other singu- 
larities may well exist in the complementary domain. On the 
other hand, we emphasize that the criterion does not guaran- 
tee a singularity at the focus in 0,. 

The location of the singularity of the analytical continu- 
ation of the field in 0, allows one to predict the validity of 
some expansions of the field used in electromagnetics and 
acoustics. The most famous of these expansions has been 
used by Lord Rayleigh to represent the field diffracted by a 
grating.' The reader interested in the study of the validity of 
Rayleigh's hypothesis may refer to recent reviews in this 
field (for instance, see Ref. 3 and included references). 

Here, we first deal with the more general case where r i s ,  
a modulated two-dimensional surface extending to infinity 
(Fig. 2), obtained by deforming a mirror placed on the Ox 
axis. An incident wave u' propagating in 0, is impinging on 
r. The equivalent of Rayleigh's hypothesis is to assume that 
in R,, the diffracted field ud = u - u' (where u denotes the 
total field) can be expressed in the form of a sum of plane 
waves 

ud = 5;- a(a)exp(iax + iDy)dcz, (29) 

withB = Jm or id-', the time dependence of the 
field being in exp( - iwt ). , 

Let us show briefly the great interest of this kind of 
representation of the field. Indeed, the right-hand member of 
Eq. (29) obviously satisfies the Helmholtz equation and the 
outgoing wave condition at infinity. So, if this representation 
is valid everywhere above r ,  it can be used to express the 

FIG. 2. Validity of the plane wave expansion in the problem of modulated 
surface. 

third condition of the boundary value problem, viz., the 
boundary condition on r. This gives a very simple tool to 
solve the diffraction problem. It is not so for other rigorous 
methods which can lead to the solving of integral equations 
or di&erential systems of infinite order. 

It can be demonstrated that the integral in the right- 
hand side of (29) actually represents ud above the topy, o f r  
(the demonstration of this property and those used in the 
following can be found in Ref. 3 for the particular case of 
diffraction gratings). Below y,, the integral is equal to the 
diffracted field or its analytic continuation in R,, provided it 
converges. Obviously, this integral cannot converge below a 
focus (except if this focus is not a singularity of the continu- 
ation of u). Indeed, since exp(ipy) behaves like exp - laly 
when lal+w, this integral cannot converge at a point of 
ordinatey' if it diverges at a point of ordinate y >yf. 

So, it can be expected that the expansion of ud given by 
(29) cannot represent the diffracted field in 0, if a focus is 
located above the bottom y, of r. This means that a method 
using this integral to express the boundary condition on r 
fails, at least from a theoretical point of view. Finally we can 
state the following rule: The plane wave expansion given by 
the right-hand side of (29) in general cannot represent the 
diffracted field in 0, when a focus of r in a, is located above 
the bottom of r. 

It must be remarked that, in the particular case where r 
is a periodic curve, a profile of a diffraction grating, similar 
criterion have been given by some authors using conformal 
mapping6.' or the steepest descent method.899 

For instance, let us consider the curve I' given by 

y = 2a/cosh x ,  with a > 0, (30) 

located above the Ox axis. 
From Eqs. (10) and (1 I), we deduce that the foci are 

given by the equation 

2 sin v + 2a sin v - 1 = 0, where v = ix. (3 1) 

There exists an infinity of foci. From the point of view of 
the validity of the Rayleigh expansion, the most important is 

20 = iyo, (32) 
with 

yo = (2a JW + 2a2)lJ2 - arcsin(Jl+a2 - a). (33) 

This focus is located on the imaginary axis CyO+ - ~ / 2  
for a 4 )  and crosses the real axis for a = 0.280 548 ... (the 
corresponding antifocus being located in 0,). 

So, we can expect a failure of the plane-wave expansion 
method for larger values ofa. The study of the other foci does 
not modify this conclusion. 

Now, let us consider a second kind of curve: the Jordan 
curve (Fig. 3). In that case, it can be shown that, if an incident 
wave propagates in R,, the field outside a circle of radiusp, 
centered on 0 can be represented by a series 

m 

ud (P ) = 2 a, H !)(kr)exp(inB ), 
- m 

(34) 

a, being complex coefficients, H !' Hankel functions, and 
(r,B ) the polar coordinates of a point P. 

Considerations similar to those described for modulated 
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surfaces demonstrate the following rule: The expansion giv- 
en by the right-hand side of (34) in general cannot represent 
the diffracted field everywhere in 0, when a focus of r in 0, 
is located between the two dotted circles of Fig. 3, of radius 
PM andprn 

Let us apply this rule to the curve r given by 

x 4 + y 4 =  1. (35) 

To find the foci o f r ,  we use Eqs. (15) and (16), and remarking 
that (35) becomes 

H (z,Z) = &(z4 + 6z2Z2 + Z4 - 8) = 0, (36) 
it turns out that 12z% + 4Z3 = 0, i.e., 

Z = 0, (37) 

or 

Z2 + 3z2 = 0. (38) 
Putting (37) into (36) shows that z4 = 8, and the asso- 

ciated foci are given by 

zo = 23'4exp(in(~/2)), n = 0,1,2,3. (39) 

These foci are located in 0, and have no interest for our 
problem. Now, Eqs. (36) and (38) lead to the equation 
z4 = - 1, which means that the second set of foci is given by 

We are led to an amazing conclusion: four foci are just locat- 
ed on the circle of radiusp, = 1, which means that the ex- 
pansion (34) actually can represent the field in a , ,  but di- 
verges just below the points of r located on the two axes of 
coordinate and placed on the circle r = p, . 

It is worth noting that Eqs. (19) and (20) allow one to 
find parametric equations associated with Eq. (35), using el- 
liptic functions. 

I"' ' 
A Y . 

fl , 

P - /  :P. e 
X 

r 

FIG. 3. Validity of a simple representation of the field for a Jordan curve. 

VI. CONCLUSION 

Introducing the notion of focus and antifocus has al- 
lowed us to state in a very simple and general form a property 
of the singularities of the continuation of the field. As a con- 
sequence, we can predict the theoretical limits of some sim- 
ple expansions used to solve a large class of boundary prob- 
lems in electromagnetics and acoustics. 
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