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We start with the study of gratings consisting of periodic arrays of thin lossy strips with arbitrary cross sections.
Then we investigate the behavior of such gratings if they are sandwiched between multilayered structures. Taking
advantage of theoretical considerations recently published, we propose an approximate method and stress the
numerical aspect. The resulting computer code seems interesting mainly for the study of gratings in the far-

infrared and microwave ranges.

1. INTRODUCTION AND NOTATIONS

Throughout the paper we assume that the grating spacing d
is of the same order of magnitude as the wavelength in
vacuum ). An efficient method has been proposed for
perfectly conducting wire gratings,!-2 but, in our opinion and
except maybe for lamellar gratings,3-® only the differential
method® has been used to solve rigorously the problem of
transmission gratings having a finite conductivity. This
method, which leads to a differential system of coupled dif-
ferential equations, can easily be implemented on big com-
puters. Nevertheless, those who wish to use microcomput-
ers certainly would like to have a simpler and faster method
at their disposal, especially if they foresee the study of bidi-
mensional gratings for which the computation time is a wor-
risome problem. We propose such a method that applies to
the case of highly conducting gratings whose thickness is
small compared to the wavelength (in a sense that will be
specified below). This frequently happens in the far-infra-
red or in the microwave range (suppose, for instance, that
the groove depth h is some tens of a millimeter and Ao some
centimeters or decimeters). For clarity, we have to recall
and comment on some theoretical results already published
(Section 2) or to be published (Section 5). These results are
of prime importance for a good understanding of the paper
and especially for Sections 5 and 6, which indeed contain the
more important and new ideas.

xyz is an orthogonal coordinate system. We deal only
with time harmonic and z independent fields in TE or TM
polarization (which means that the electric field or the mag-
netic field is parallel to the z axis). The total field is repre-
sented by a scalar function u(x, y) taking into account a time
dependence in exp(—iwt). This function is the z component
of E or H depending on the polarization (TE or TM). We
denote by ¢ and uo the permittivity and the permeability of
vacuum,

2, SOME THEORETICAL PREREQUISITES

Figure 1ashows a wire metallic grating G, with a pitch d and
thickness hy surrounded by vacuum.” We suppose that the
metal has the same permittivity and permeability as vacuum
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and a real conductivity ¢ (a model often used in the far-
infrared and microwave ranges). Under these conditions
the metal is equivalent to a lossy dielectric with relative
permittivity e = 1 + io/eow. The cross section of a wire can
be described by a positive function f(x) whose maximum
value is unity; f(x) defined on the period interval (—d/2, d/2)
vanishes for ¢/2 < |x| < d/2, and the cross section is limited
by the x axis, 4he lines x = +¢/2 and the graph of y = hof(x).

Let us consider (Fig. 1b) a family of gratings G whose
thickness & tends to zero and whose conductivity varies in
such a way that the product of the thickness and the conduc-
tivity keeps a constant value. This means that we assign to
the grating G a conductivity cho/h. If illuminated by a
given incident field ui(x, y), this grating ‘gives rise to a dif-
fracted field u,?(x, y) corresponding to a total field u,(x, y) =
ui(x, y) + upd(x, y).

If h vanishes, G, reduces to the infinitely thin grating Gg
(Fig. 1c), and u(x, ) tends to a limit field uy(x, y) that has
been studied in detail in a previous theoretical paper.8
Hereafter G will be called a grating interface. The limit
field uo(x, y) verifies the Helmholtz equation in the comple-
mentary of Gy and satisfies on Gy boundary conditions® that
are neither the Dirichlet condition nor the Neumann condi-
tion. More precisely, if ug*t(x) and ug~(x) are the limits of
uolx, y), where y tends to zero by positive or negative values,
respectively, and if kyp = w(ugep)'/2, the pertinent boundary
conditions® depend on the function f and on a dimensionless
parameter s associated with G, and defined as

s = hyon, (1)

where 79 = (uo/€p) /2 is the vacuum impedance. These condi-
tions, which of course also depend on the polarization, are

dug\*t  [fOuy\”
ut =uy, (a_yo) - (T;) = —ikosfu,t

in the TE case, (2)

duy\* 6u0>‘ + _ s (6u0>+f
—_— = —_— y — u | J— _
dy Ay o 0 ky \ 0y

in the TM case. (2')
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Fig.1. Grating Gi,. The hatched area is the cross section of a wire.

b, Grating G;,. We consider G}, in the course of the limiting process.
¢, Heavy line, the infinitely thin grating G,.

Maybe it is better to say that Eqgs. (2) and (2’), which give the
jumps of ug and its normal derivative at y = 0, are transmis-
sion conditions rather than boundary conditions, which we
will consider from now on.

It must be noticed that Egs. (2) and (2'), respectively,
reduce to the Dirichlet boundary condition (ue* = ug~ = 0)
and to the Neumann boundary condition [(3uo/dy)* = (duo/
dy)~ = 0] for only perfectly conducting wires (s = ). Of
course these conclusions are reminiscent of considerations
developed by several authors for rectangular cross sec-
tions®!! and linked with the concept of surface impedance.
For example, the reciprocal of our parameter s is nothing
other than the normalized square resistance used in two
recent papers.'®1! Nevertheless we want to emphasize that
the paper that we refer to? is founded on the sound basis of
modern functional analysis; it states precisely which notion
of convergence must be used and, more generally, tries to
throw light on the concept of infinitely conducting and infi-
nitely thin material. It must be also emphasized that the
transmission conditions [Eqgs. (2) and (2’)] depend on f(x),
i.e., on the initial shape of the cross section (a point that, to
our knowledge, has not been mentioned before). Indeed all
the proofs in Ref. 8 are related to a single rod, but, no doubt,
the generalization to a grating would be straightforward for a
mathematician and intuitive for a physicist.

3. APPLICATION TO THE THEORY OF THIN
AND HIGHLY CONDUCTING METAL WIRE
GRATINGS

Until now we have been concerned with a rather academic
problem. Let us turn to numerical and more practical con-
siderations. A given metal grating Gy, defined by hy, o, and
f(x), is illuminated in vacuum by a plane wave under the
incidence 8:

u'(x, y) = expliky(x sinf — y cos 8)]. (3)
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We look for the associated total field up(x, y). This prob-
lem can be solved by the differential method as explained in
Ref. 6. But if ko is small enough we can expect that us(x, y)
is not extremely different from the limit field uo(x, y) de-
fined in Section 2. This guess has been checked with the
help of a computer code based on the differential method
that, for small thicknesses, appears to be perfectly reliable
whatever the polarization. Starting from the grating Gy,
(thickness hy, conductivity o), let us consider again the fam-
ily of gratings G, described in Section 2 (thickness h, con-
ductivity oho/h) and corresponding to the parameter s =
chono. For the grating Gy, let e(h) be the sum of the e,(h),
e.(h) being the efficiency in the nth diffraction order. Con-
sequently, the fraction Q(h) of the incident energy absorbed
by the Joule effect is 1 — e(h). In Fig. 2, obtained by using
the differential method, one curve corresponds to a family of
gratings Gy, and gives e(h) versus log(koh). It appears that,
provided that koh is less than 1072 (and even less than 1/3 for
s = 0.5), e(h) is practically constant and equal to the value
e(0) (associated with Gg) that can be obtained in a much
simpler way as explained below in Section 4. Indeed, we
have verified that this conclusion also holds for each of the
efficiency e, and for other cross sections. Inother terms and
provided that koho < 1072, the gratings G, and G, have the
same behavior; from the numerical point of view we can
therefore replace the study of the grating G, with the study
of grating G,. Obviously the properties of the grating Gy,
depend on the shape of its cross section, and this is why the
function f must appear in Egs. (2) and (2').

4. NUMERICAL STUDY OF THE INFINITELY
THIN GRATING G, SURROUNDED BY A
VACUUM

This is indeed a simple matter, and we will give only an
outline.!? As we did for classical gratings,® it can be proved
that the total field u(x, y) associated with the incident field
u'(x, y) can be represented by a Rayleigh expansion fory >0
and for y < 0 as well:

4+
ulx, y) = ui(x, y) + Z R, exp(ia,x +i8,y) fory >0,
ne—w
fory >0, (4)
1.00
=100 e
0.q01 " 100
T s =0.5
.80 s = 10
s =2
0.70 . 822, ______ DU e,
p.684
2.50 . . . : .

-5.0 -4.2 -3.8 -2.8 ~-l.@ 2.0 1.0
Fig.2. Wesuppose that ¢ = d/2, \¢/d = 0.75, 8 = 0, and we deal with
a rectangular cross section: f(x) = 1if |x| <¢/2and 0if ¢/2 < |x| <
d/2. Each curve shows, for a given value of parameter s, the varia-
tions of e versus log(koh). Solid curves and dashed curves corre-
spond, respectively, to TE and TM polarization.
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+

u(x,y) = z T, exp(ia,x — iB,y) fory <0, (5)
with

a, =kysind +n2r/d, B, =k —a,’%  B,orB,/i>0.

(6)

In order to find the Rayleigh coefficients R,, and T, we have
to write that u(x, y) fulfills the transmission conditions [Egs.
(2) or (2)]. To this end it is convenient to introduce the
functions

u,* (y) = exp(+iB,y),

which permits us to rewrite Eqgs. (4) and (5) by using a
generalized Fourier series®

u,”y = exp(—ig,y), 7N

4w
u(x,y) = Z [6,0t,~(y) + Ru,* (0)]exp(ia,x)
fory>0, 4)
4o
u(x,y) = Z T.u,” (y)exp(ia,x) for y <0. (5")

Recall that if a periodic function f and a pseudoperiodic
function g are written as

f= Z fn exp(i ”dﬁ x), g= Z g, explia,x),

then their product p = fg can be expanded in a generalized
Fourier series

p= Z P, exp(ia,x), with p,, = Z fremBme

Therefore the matching of Eqgs. (4') and (5) can be easily
performed by writing, for each transmission condition, that
the two members have the same Fourier coefficients. In TE
polarization we are led to

R, —T,==6,0 ®)

s 4

Rn + ; (6m,n + kO Efn—m)Tm = 6n,07 (8 )
whereas in TM polarization we have

R, +T,=56,, 9)

o y ’

Rn - ; (6m,n + E(; ﬁmfn—m)Tm = _571,0' (9 )

Keeping only P = 2N + 1 terms in the Fourier series, we get
R, and T, by solving the linear systems [Eqgs. (8) and (8’) or
Eqgs. (9) and (9')].

As an illustration, curves are given for two profile func-
tions described in Fig. 3. These functions correspond to a
rectangular or a triangular cross section for grating Gy,
These curves (Figs. 4-7) show, for § = 30°, |R,) versus d/\, for
different values of ¢/d. They have been obtained with s =
0.24r, a value that corresponds to R = 500 Q/square in the
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terminology of Ref. 10. Figure 4 shows that our results are
in perfect agreement with those given by Hall and Mittra!®
in their Fig. 6, except perhaps near a Rayleigh anomaly, for
which the shape of the computed curve is of course strongly
dependent on the number of sampling points. Our Figs. 4

f(x)
1
. .
-d/2  -c/2 cl2 a2 x
c/d if n=0
fn =
(4/n17) sinlnTre/d) if n£0
{¥]
1
’ i
-d/i2 -c/2 c/2 d2 x
c/2d if n=0
f, =

(Rd/in’ o) sintihTre/2d) if ns<0

Fig. 3. Two profile functions represented on one period and their
Fourier coefficients.
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Fig. 4. Rectangular cross section, TE polarization.
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Fig. 5. Rectangular cross section, T'M polarization.
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Fig. 6. Triangular cross section, TE polarization.
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Fig. 7. Triangular cross section, TM polarization.
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and 5, as compared with our Figs. 6 and 7, show the influence
of the profile function f(x). Only a few seconds are needed
to obtain one curve (Fig. 4-7) on a Hewlett-Packard 1000F
computer. On this small computer, the differential method
generally requires at least 20 times as much computational
time.

As a last remark, one can notice that, in TE polarization,
the diffracted field u¢ = u — u’ is generated by currents
located in the ¥ = 0 plane and parallel to Oz. Consequently
u?(x, —y) = u(x, y), which imposes that the Rayleigh coeffi-
cients R, and T, are such that T, = R,, + 6, 0. This property
can be and has been used to check the computer code.

5. PROBLEM OF A THIN GRATING LYING
ON A SUBSTRATE

In this section, we generalize in two steps the theoretical
results given in Section 2, supposing now that the grating G,
depicted on Fig. 1 is surrounded by two different homoge-
neous media with optical index »* (for y > 0) and v~ (for y <
0).

First Generalization

If the grating material is still an ohmic metal (described by
€0, 1o, and o), we can consider the same limiting process as in
Section 2. From theoretical considerations, which are the
subject of a recent paper by our colleague Bouchitté!? (and
which have been verified with the help of the differential
method), it turns out that, in the TE case, the transmission
conditions [Eq. (2)] imposed to the limit field uy(x, y) are
still valid. On the other hand, in the TM case and if »(y)
denotes the optical index [»(y) = v* if y > 0and v~ if y < 0],
Eq. (2') must be replaced by

1 du, is {1 Oug
— I = 0’ =—\t—=—1, 1
ll:"2 3y:ﬂ [l kq (1/2 3y f (10
where the notation [F] stands for the jump at y = 0 of a

function F(x, y). Notice that this jump [F] = F(x, 0*) —
F(x,07) is a function of x.

Second and Chief Generalization

Currently we have to deal often with materials that are lossy
without being ohmic metals. They are in fact composite
materials (such as rubber—carbon mixtures), macroscopical-
ly described by a relative permittivity whose real part is not
unity. In this case we have of course to reconsider the
limiting process described in Section 2. We denote now by ¢
= ¢ + i¢” the complex permittivity (the square of the com-
plex optical index) of grating G, whose thickness is hy. We
impose that, if the thickness tends to zero, the permittivity
varies in such a way that the product of the thickness and the
permittivity remains equal to ehy. The grating G, has there-
fore a thickness h and a complex permittivity ehg/h. When

I = hyekg, (11)
theoretical considerations!3 show, and numerical experi-

ments have confirmed, that the transmission conditions im-
posed on ug(x, ¥) by Gy are now

u
[uol = 0, I[Bﬂl = —kylfu, inthe TEcase, (12)
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10w _ 1 (1 du
H:VQ ;y— =0, ol = ko (1/2 dy )f
in the TM case. (13)

6. NUMERICAL STUDY OF A STACK OF
LAYERS AND GRATINGS

In what follows, the periodic structure shown in Fig. 8 is
called a grating layer. As already explained for a single
grating, and provided its thickness hg is small enough, such a
structure can be replaced by an infinitely thin grating that
we call a grating interface. From numerical experiments
quite similar to those described in Section 2, and illustrated
by Fig. 2, it appeared to us that the domain of validity of this
approximation is practically independent of the optical in-
dex of the dielectric that fills the dotted domain in Fig. 8.
We have been concerned recently with the study of a stack of
homogeneous layers intermixed with thin grating layers
(Fig. 9a), all the grating layers having the same period d and
a thickness smaller than some hundredths of a wavelength.
We solved the problem as follows: We replaced each grating
layer by the associated grating interface, and we dealt in fact
with a stack of homogeneous layers separated either by regu-
lar plane interfaces or by grating interfaces (Fig. 9b). If
such a structure is illuminated by a plane wave [Eq. (3)] the
total field u(x, y) is pseudoperiodic!? and consequently can
be expanded, with respect to x, in generalized Fourier series
whose coefficients depend on y:

ul(x,y) = Z u,(y)exp(ia,x),

where «, is still given by Eq. (6). In each layer, u,(y) is the
sum of two terms, namely,
u, (y) = A, exp(—iB,y) andu,*(y) = A,* exp(+iB,y).
(14)

Of course, A,~, A,%, and S, vary from one layer to another
one. After truncation of the series, it is convenient to de-
scribe the field by a vector U (a column matrix) with 2P
components, namely, P functions u,~ and P functions u,*.
Clearly U depends ony. Given two ordinates y; and y» (y; >
¥2), a straightforward generalization of the well-known ma-
trix theory of stratified media permits us to get a matrix IM
such that

Uy, = MU(y,).

[ %4

Fig. 8. Grating-layer for which the hatched and the dotted areas
are filled with absorbing materials (relative permittivity e = ¢ + ie”)
and dielectric materials, respectively.
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a
e e e 2000 20 0 20 e 2020 2020 0 20 2020 20 2%
b

Fig. 9. a, Stack of homogeneous layers intermixed with thin grat-
ing layers. b, Equivalent structure used for computation; each
grating layer has been replaced by the associated grating interface.

Such a matrix is obtained as a product of three kinds of
matrices, namely,

L matrices associated with the propagation inside a layer,

I matrices associated with the crossing of grating inter-
faces,

I' matrices associated with the crossing of regular plane
interfaces.

I matrices are diagonal matrices whose determination is
obvious. Therefore the only problem is to write the coeffi-
cients of I matrices since a regular plane interface is a partic-
ular case of a grating interface. We give in Appendix A the
transfer relations concerning u,* and u,~ if a grating inter-
faceis crossed. These relations result from the transmission
conditions [Eqs. (12) and (13)]. If the reader finds it neces-
sary, they can be put in matrix form. Anyway, it is under-
stood that, for any stack of layers and thin gratings located
between the ordinates yn;, and ynax, one can construct a
matrix IM such that

U(ymax) = ]MIJ(ymin)' (15)

It is convenient to split U into two blocks U~ and U*,
respectively associated with downward and upward waves.
Then Eq. (15) can be written as

U_(ymax) = Mll MIZ U‘(ymin) (15,)
Ut (Y imax) M, My || Uy |
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Solving a problem consists of finding the columns U*(yyay)
and U~ (¥min) if U™ (Ymax) and Ut (ymin) are known. Thisisa
classical problem of linear algebra that reduces to matrices
products and matrix inversions. If the stack is illuminated
from the top by a plane wave, U~ (ymax) reduces to a number
and U*(ynin) vanishes; if the stack lies on a perfectly con-
ducting substrate, we have in TE polarization Ut (ynin) =
=U(¥min), etc. We will not enter the details, and obviously
several numerical treatments are possible. Anyway, owing
to short computation times, this approximate method is
attractive and can be implemented on a microcomputer.
Unfortunately, and as far as we know, the upper bound of
the error is not known. In the course of a given study, we
must, from time to time, compare our data with those pro-
vided by an exact method.

As an illustration, we will give some data for two particular
structures; possibly they can be used to compare our results
with other ones. At first, consider the structure depicted on
Fig. 10, which contains two grating layers having the same
thickness kg = 0.01)\; the permittivity of the hatched region

vacuum
hot S~ ST < a\ < TS |\
Y
ho{__J:::ss:n_____s::ss:m_____xzcss::L_ t
v t
S
Fig. 10. Two grating layers separated by dielectric layers.
0.80
0.70L
0.60
0.501
0.401
0.301
0.20L
0.101 ",
0.00 : : . |

0 20 40 60 80

Fig. 11. Efficiency curves: dashed curve, reflected efficiency in
the zero order versus the angle of incidence 8; solid curve, sum of the
efficiencies in the reflected orders versus 6.
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vacuum

§§§inﬁnﬁew conducting substrate

Fig. 12. Modified Salisbury screen: t = \o/4v, A\¢ = 0.75d.

I c/d = 0.25

2.2 ; 1 . ,
) 20 42 60 80 100

Fig.13. Modulus of the reflection coefficient in the zero order (i.e.,
IR,) using notations of Section 4) versus 6.

is € = 8 + (3.5, a value from a recent paper'* devoted to
microwave absorbers at 9.5 GHz. The optical index v has
been arbitrarily chosen as 1.5, and ¢ = A\y/10. For both
gratings the pitch is d = 4/3), and the widths of the strips
are ¢ = 0.75d and ¢ = 0.5d for the triangular grating and the
rectangular grating, respectively. The efficiency curves are
given in Fig. 11 for TE polarization. We recall our definition
of the reflected efficiency in order n: e, = |R,|28,/8 if we
use the notations of Eq. (4). Figure 12 represents an array of
thin strips with rectangular cross section and thickness hy,
separated from an infinitely conducting substrate by a di-
electric. The strips are made with a material whose relative
permittivity is ¢ = ¢ + ie” and correspond, therefore, to a
parameter | = koh(¢’ + ie”). We suppose that kohe’ << 1 and
kohe” = 1. Under these conditions and taking [ = i, we
obtain, for different values of ¢/d, the curves of Fig. 13. Ifc/
d = 1, the structure reduces to the so-called Salisbury screen.
The condition kohe” = 1 corresponds to a square resistance
of 1207 = 377 Q/square, and one can verify that, for ¢/d = 1,



1692 J. Opt. Soc. Am. A/Vol. 7, No. 9/September 1990

our curve is in agreement with that given in radar literature
(Ref. 15, p. 244).

7. CONCLUSION

A numerical method has been proposed for the study of
diffraction and absorption by sufficiently thin gratings.
The strip cross section, to a large extent, is arbitrary, and the
grating material does not need to verify Ohm’s law, as do the
usual metals in the microwave range. It can be, for example,
a rubber-carbon mixture. The case of arrays intermixed
with dielectric layers (Fig. 9a) is also solved by using a gener-
alized scattering matrix theory. The numerical implemen-
tation is easy, and the resulting code can be used to investi-
gate the properties of rather complicated periodic structures
(Fig. 9a) if the complex permittivities of the different mate-
rials are known. Owing to the short computation time, this
method is especially recommended to analyze the influence
of a particular parameter on the behavior of the structure, as
awhole. If necessary, the validity of the approximation can
be checked, for some points, by comparison with a more
rigorous but also more time-consuming integral or differen-
tial method.

APPENDIX A

Let us consider a grating layer (Fig. 8) surrounded by two
layers (optical index »* for the upper layer and »~ for the
lower one). Function f(x) = 3, f, exp(in27x/d) describes
the shape of the cross section. If this grating layer is suffi-
ciently thin, it can be replaced by a grating interface placed
at a certain ordinate y, and characterized by the complex
number | = kohge. In each layer, the total field can be
written as u(x, v) = ¥, [un~(v) + unt(y)]expia,x). We put
(827)2 = ko?(r%)? — a2 and (8,7)% = ko’ (v™)? — o, with g,*
>0orB,%/i > 0. Recalling that in eachlayer u,” and u,,* are
given by Eqgs. (14), the boundary conditions [Eqgs. (12) or
(13)] yield

u’n_(y0+) = snun_(yO—) + dnun+(y0_)

kol — - —-
* oo 5 ; Frmmltim™ 367 + w37,
w, 00" = dau, () + s, (0rg7)

zfn mltin™(07) + U (357)]

in TE polarization and
un—(yO+) = snun—(yO_) + dnun+(yO—)
l
Y —m m— _um— )+ um+ BB
P ;f,, B [t 007) + 1 (5]
un+(y0+) = dnun—(yO—) + snun+(yO~)

2lk( )2anmm[u (y0)+u +(yO)]
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in TM polarization, where
IART S Ay
28, 28,

’ n

in TE polarization or
B, ) —B,7/(v7)?
28, /(v")?

. - B+ 8,7 /()
" 28,*/(v*)?

’ n -

in TM polarization.

As usual, u,~(y¢") stands for the limit of u,~(y) if y tends to
¥yo with ¥ > y,, and the coefficients s, appearing here are of
course not connected with the parameter s defined by Eq.
(1). It must be noticed that the index of the dotted domain
(Fig. 8) does not appear in the boundary conditions.
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