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We use a rigorous method for diffraction by a finite set of parallel cylinders to study the influence of defects in
a photonic crystal. The method allows us to give an accurate description of all the characteristics of the elec-
tromagnetic field (near-field map, scattered field, and energy flow). The localized resonant modes can also be
computed. We show some of their symmetry properties and the influence of coupling between two neighbor-
ing defects. Finally, an example is given, which shows that a slight local change in the crystal period can be
used for the realization of devices that radiate energy in a very narrow angular range. © 1997 Optical Society
of America [S0740-3232(97)01911-X]
1. INTRODUCTION
Basically, photonic crystals are derived from periodic
structures. Because of the periodicity, they exhibit pho-
tonic band gaps, which means that electromagnetic fields
cannot propagate in such structures in a given range of
frequencies and directions. It is well known that the in-
troduction of defects in the periodic lattice generates lo-
calized electromagnetic modes. In this way high-quality
optical microcavities can be obtained. Potential applica-
tions in many technological areas, such as the develop-
ment of efficient semiconductor light emitters, filters, sub-
strates for antennas in microwaves, and lossless mirrors,
have generated a growing interest in the study of the
properties of photonic band-gap materials.

We present a numerical study of two-dimensional pho-
tonic structures of finite extension (the photonic crystal is
a finite set of parallel rods). For this purpose we use a
rigorous theory in which each rod is characterized by its
scattering matrix, which links the diffracted field to the
incoming one, these fields being represented by Fourier–
Bessel expansions. From translation properties of Bessel
functions, the scattering problem is reduced to the reso-
lution of a linear system. The method is numerically ef-
ficient and can be implemented on a desktop workstation
with short computation times. This approach is com-
pletely different from the other theories generally used
for such devices: for instance, the plane-wave expansion
method in which the fields are expanded in a set of har-
monic modes and the resulting eigenvalue problem is
solved with a variational principle,1,2 or the transfer-
matrix method.3,4 In these last two methods, problems
involving finite-size crystals with defects4,5 are solved
with the supercell approximation, which replaces the non-
periodic structure by a periodic one. The preceding
methods solve the problem in the frequency domain. A
different approach5 is able to deal with the time domain.
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Experimental studies of the influence of defects in two-
dimensional photonic structures have also been published
(see, for instance, Refs. 6–8).

The theory is briefly described in Section 2, and its
most interesting features are pointed out. It is shown
how all electromagnetic quantities (near-field map, scat-
tered field, and energy flow) can be rigorously computed
and also how the resonant modes of the structure can be
obtained. Section 3 illustrates the method for a simple
example with one defect (one cylinder is removed). A
comparison between the transmission of a finite-size crys-
tal and an infinite one is also given. Sections 4 and 5
concern crystals with two defects, and we pay attention to
the coupling between the resonant modes and their sym-
metry properties. In Section 6 we present a structure in
which one part of the crystal has been expanded in one
direction. In this way the emission can be strongly con-
centrated in a very narrow angular range.

2. THEORY AND NOTATION
In this study we are concerned with a periodic and finite
set of parallel cylinders lying in vacuum and presenting
some defects [Fig. 1(a)]. These defects are obtained by
removing some cylinders inside the crystal in order to get
microcavities.

The first step is to find adequate parameters for the
cylinders—index n, radius r, and crystal geometry—in or-
der to get a band gap (i.e., conditions in which no propa-
gation occurs in the crystal for a certain range of wave-
lengths and for any direction). For that purpose we can
consult, for instance, Ref. 2, in which an atlas of band
gaps for two-dimensional crystals is given. In the
present work, we have used a computer code dealing with
gratings and based on an integral method.9 This code
makes use of the periodicity and allows us to investigate
1997 Optical Society of America
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with short computation time the properties of photonic
crystals such as that presented in Fig. 1(b). On the other
hand, this code cannot handle defects, on account of the
break of periodicity. Throughout the paper we retain a
crystal with a hexagonal symmetry, and the polarization
is chosen in such a way that the electric field is parallel to
the cylinders (we denote this polarization case by E i). In
these conditions, with denoting d the cylinder spacing
(distance between the centers of the closest cylinders), a
band gap exists for a radius-to-spacing ratio r/d close to
0.15 and for an optical index of the cylinders of n 5 2.9.

For the study of finite-size crystals [Fig. 1(a)], we use a
rigorous code based on a modal theory.10 This code has
also been used for the study of the localization of light by
a set of parallel cylinders.11 We give below an outline of
the main features of this method. The reader interested
in more details is directed to Ref. 10.

Let us consider a set of N parallel cylinders C j , j
5 1, ..., N (they can be of arbitrary shape, index, and po-
sition), as shown in Fig. 2. The medium outside the cyl-
inders is vacuum. The problem is two dimensional: The
cylinders are infinite in the z direction parallel to the cyl-
inders, and the incident field is also z invariant. We con-
sider a harmonic problem with wavelength l and pulsa-
tion v, and the fields are represented by their associated
complex vectors, with a time dependence in exp(2ivt),
with k 5 vAe0m0 5 2p/l. Since we assume E i polariza-
tion, the problem reduces to a scalar problem in which the
unknown is the z component Ez of the electromagnetic
field. The incident field Ez

inc is arbitrary. In the numeri-
cal examples shown in the following sections, it will be,
for instance, a plane wave with a wave vector in the x –y
plane or the field generated by an infinitely thin wire par-
allel to the z axis, flown by a filament current and acting
as an antenna.

For any cylinder C j , we consider a circle D j with center
Oj in such a way that the cylinder is completely inside D j .
Because of the properties of the Helmholtz equation, the

Fig. 1. (a) Finite crystal (11 layers of six or seven cylinders)
with two defects, (b) associated periodic crystal dealt by our in-
tegral grating code (11 grids that are infinite in the horizontal
direction).
total field at a point P on D j can be written as a Fourier–
Bessel expansion. Denoting by rj(P) and u j(P) the polar
coordinates in the local system (Oj , xj , yj), we can write

Ez~P ! 5 (
m52`

1`

@aj,mJm(krj~P !)

1 bj,mHm
~1 !(krj~P !)#exp@imu j~P !#. (1)

The two terms in the preceding series can be interpreted
in the following way.

The second term satisfies a radiation condition and
thus represents the field scattered by the cylinder C j .
For each cylinder this scattered field will be characterized
by the column matrix bj containing the bj,m elements.

The first term represents the local incident field on the
cylinder C j , generated by the actual incident field Ez

inc as
well as by the fields scattered by all the other cylinders
C k with k Þ j. Denoting by aj the column matrix con-
taining the aj,m and using translation properties of Bessel
functions (Graf ’s formula12), one can obtain10 for any cyl-
inder C j a linear relationship:

aj 5 Q j 1 (
kÞj

Tj,kbk , (2)

where Q j is a known column matrix that represents the
actual incident field on the cylinder C j and Tj,k is a
known square matrix (its elements simply contain expo-
nentials and Hankel functions). For any cylinder C j , an-
other relationship between bj and aj is provided by the
scattering matrix Sj of the cylinder. The diffracted field
is linked to the local incident field by

bj 5 Sjaj . (3)

Eliminating aj from Eqs. (2) and (3) and then collecting
the equations written for each cylinder lead to a linear
system that gives the solution bj :
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Fig. 2. Scattering by a set of parallel cylinders of arbitrary
shape, index, and position.
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where I denotes the identity matrix. For brevity, this
equation will be written as

S21B 5 A (5)

and formally inverted as

B 5 SA. (6)

Now let us point out some features of the method.

1. In Eq. (6) column A linearly depends on the actual
incident field Ez

inc , and column B contains the informa-
tion on the field diffracted by the entire set of cylinders.
In that sense S is the scattering matrix of the set of cyl-
inders. From Eq. (4) it appears that S21 is simply built
as soon as the scattering matrices Sj of all cylinders are
known. This feature is interesting from a numerical
point of view. It means that the individual scattering
matrices Sj can be constructed independently from the
main code dealing with the set of cylinders. In this pa-
per, where the cylinders are circular, the matrices Sj are
very simple and reduce to diagonal matrices whose ele-
ments can be expressed in closed form. But when the
cylinders are arbitrarily shaped, we use an external inte-
gral code to compute the Sj . Another important point is
that, when all the cylinders in the set are identical, all the
matrices Sj are also identical (because they are defined in
the local coordinate system centered on each cylinder).

2. Solving system (4) gives the bj,m . From that
knowledge the total electric field Ez is given outside the
circles D j by

Ez~P ! 5 Ez
inc~P !

1 (
j51

N

(
m52`

1`

bj,mHm
~1 !(krj~P !)exp@imu j~P !#.

(7)

Taking the gradient of this expression, we get the
magnetic-field components. The Poynting vector can fi-
nally be deduced from all these expansions. The impor-
tant point is that the field and the Poynting vector can be
obtained in closed form anywhere outside the circles D j
from expansions with bj,m coefficients and involving
known functions (exponentials and Bessel). In the case
of circular cylinders, circles D j coincide with the surface
of the cylinders, and moreover we are able to find similar
expansions inside the cylinders. The consequence is that
we can plot exact field and Poynting vector maps for any
region of space. Of course, the far-field characteristics
(intensity at infinity or bistatic differential cross section)
are also easily obtainable.

3. For numerical purposes it is clear that the series in
Eq. (1) has to be truncated. It can be shown that, be-
cause of properties of the Helmholtz equation, the terms
of the series are decreasing extremely fast after a given
threshold is reached. Assuming that we keep M terms in
the series, columns aj and bj reduce to M elements, ma-
trices Sj have a rank M, and linear system (4) has a rank
NM. In fact, the value of M is closely linked with the
radius r of the cylinders and the wavelength l, and a con-
venient value for M is given by the empirical rule M
' 40r/l (taking M as an odd integer, at least equal to 1).
With such a value of M, the accuracy is better than 1%.
As an example, typical values used hereafter are r
5 0.6 and l 5 9, which gives M 5 3. This means that
for N5 100 cylinders, we solve a 300 3 300 system. All
computations have been performed on a desktop worksta-
tion. As a general rule, all the following results have
been computed by increasing M until no difference can be
observed on the curves or the maps.

4. The incident field is arbitrary. In the following
sections, some examples deal with an incident plane wave
with incidence u inc on the main face of the crystal [as in
Fig. 1(b)]. In that case

Ez
inc~x, y ! 5 exp@ik~x sin u inc 2 y cos u inc!#. (8)

In some other examples, the source is an infinitely thin
wire parallel to the z axis, acting as an antenna. If the
position of this antenna in the x –y plane is r0 , the inci-
dent field will be taken as

Ez
inc~r! 5 H0

~1 !~kir 2 r0i !. (9)

5. Another fundamental feature is to get the resonant
modes of the set of cylinders. We define these modes as
solutions of Maxwell’s equations without any incident
field. In this case we have Ez

inc 5 0, and system (5) re-
duces to

S21B 5 0. (10)

At this step one must keep in mind that the scattering
matrix S can be considered as a function of the wave-
length l. Equation (10) has solutions only for discrete
values lp of l, which are the poles of the S matrix:

det@S21~lp!# 5 0 (11)

or, equivalently,

det@S~lp!# 5 `. (12)

These complex values lp are obtained numerically by
searching for the roots of det@S21(l)#. For each of these
wavelengths lp , we can further get the resonant mode
[the B column associated with the mode is nothing other
than the eigenvector of S21(lp) associated with the eigen-
value 0].

6. Last, we must point out one limitation of the
method. The Fourier–Bessel expansion in Eq. (1) is valid
only if the circle D j lies in a homogeneous medium. This
means that the circle that contains one cylinder cannot
intersect the boundary of another cylinder. In other

Fig. 3. The circles containing each cylinder must have no inter-
section.
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words, the circles D j must have no intersection (Fig. 3).
Of course, this is always so when the cylinders are circu-
lar. In fact, for noncircular cylinders, the problem is
much more subtle, and the method should also work in
some cases in which the circles intersect. The problem is
similar to the problem of validity of the Rayleigh hypoth-
esis in grating theory.13–15

3. CRYSTAL WITH ONE DEFECT
In this section we illustrate the capabilities of our com-
puter code in the case of a photonic crystal with one de-
fect. Figure 4 shows the geometry of the crystal. It is
composed of a set of dielectric circular cylinders with ra-
dius r 5 0.6, spacing d 5 4, and optical index n 5 2.9.

Figure 5(a) gives the transmission of this crystal versus
the wavelength. To compute this transmission, the inci-
dent field is a plane wave with normal incidence [coming
from the top of Fig. 4, i.e., u inc 5 0° in Eq. (8)]. We com-
pute the flux of the Poynting vector Ftrans for the total
field on a segment lying below the crystal (see Fig. 4).
We also compute the flux of the Poynting vector F inc for
the incident plane wave on the same segment. We define
the transmission as T 5 Ftrans/F inc. Of course, the seg-
ment must be short enough, since it must not collect the
power flowing around the crystal (see Fig. 4). Figure 5(a)
also gives the transmission for the same crystal as that of
Fig. 4, but with no defect (dashed curve; the central cyl-
inder has not been removed). The gap lies between
wavelengths 7.3 and 10.8. When the central cylinder is
removed (solid curve), a sharp transmission peak appears
at wavelength l ' 9.06. This is due to the fact that, at
this wavelength, a resonance occurs in the microcavity
made by the defect, this microcavity playing the role of a
relay for photons.

Figure 5(b) compares the transmission of a finite crys-
tal and of a periodic crystal with infinite extension in the
horizontal direction [as shown in Fig. 1(b)]. The dashed
curve has the same meaning as that in Fig. 5(a). The
solid curve has been computed by our code dealing with
gratings and based on an integral method9 for a crystal

Fig. 4. Crystal with one defect. The segment below the struc-
ture is the one used for the computation of the transmission.
with the same parameters (nine grids that are infinite in
the horizontal direction). In that case the transmission
is simply given by the grating efficiency in the zero trans-
mitted order. A very good agreement between the two
curves can be observed. Indeed, the limits of the gap
agree quite well, as well as the oscillations of the trans-
mission outside the gap. Some extra oscillations appear
on the right-hand limit of the gap with the finite crystal.
The difference between the transmissions inside the gap
can be easily explained: For the finite crystal, the seg-
ment used for the computation of the transmission col-
lects a small part of the energy flowing around the crystal
in such a way that the transmission never falls under
1024. This is not the case for the infinite crystal.

For the crystal with one defect (Fig. 4), the resonance
can be studied with more detail by searching the resonant

Fig. 5. (a) Decimal logarithm of the transmission T versus the
wavelength for the crystal of Fig. 4 (solid curve) and for the same
crystal, but with no defect (dashed curve). (b) Dashed curve:
same meaning as that of the dashed curve in (a) (finite crystal of
Fig. 4 with no defect); solid curve: curve obtained for a crystal
with infinite extension in the horizontal direction. The wave-
length sampling pitch is equal to 0.05, with some extra points
near the central peak of (a).
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mode. A numerical research of the poles of the S matrix
gives the complex resonant wavelength lp 5 9.0572
1 i0.00092. Figure 6 gives the field map for this mode.
The small imaginary value of lp is related to the fact that
the mode has losses: Energy radiates out of the crystal.
When the size of the crystal is increased, these losses de-
crease and consequently the imaginary part of lp de-
creases too. For example, we have considered the same
crystal, but now surrounded by two additional rows of cyl-
inders (13 layers of 13 or 14 cylinders instead of nine lay-
ers of nine or ten cylinders as in Fig. 4). In this case the
resonant wavelength is found to be lp 5 9.0572
1 i0.000028.

Figure 7 shows the Poynting vector map for the crystal
illuminated in normal incidence by a plane wave with l
5 Re(lp) 5 9.0572. An arrow has been placed on each
point of the grid, giving the direction of the Poynting vec-
tor. The size of the arrow is proportional to the modulus
of the Poynting vector. This map shows the light travel

Fig. 6. Modulus of the field associated with the resonant mode
for lp 5 9.0572 6 i0.00092. The crystal is the one shown in
Fig. 4.

Fig. 7. Poynting vector map for the crystal of Fig. 4, illuminated
by a plane wave with l 5 9.0572 in normal incidence.
through the crystal and clearly explains the transmission
peak of Fig. 5.

4. COUPLING BETWEEN DEFECTS
We now consider a crystal with the same parameters as
those in Section 3, but with two defects. Figures 8 and 9
show two crystals with different distances between the
defects. Figure 10 gives a comparison of the transmis-
sion curves for the different crystals illuminated by a
plane wave in normal incidence. In the case of two de-
fects we now get two resonant modes. In Fig. 8 the
transmission peaks occur for l 5 8.985 and l 5 9.135,
whereas for Fig. 9 they occur for l 5 8.525 and l
5 9.655. It can be seen that the usual rule applies: As
the coupling between the microcavities is increased, the
resonant wavelengths of the modes are more split.

5. INFLUENCE OF SYMMETRIES
We still consider a crystal with the same parameters as
those in Sections 3 and 4 and with two defects. We con-

Fig. 8. Crystal with two distant defects. The segment below
the structure is the one used for the computation of the trans-
mission.

Fig. 9. Crystal with two close defects. The segment below the
structure is the one used for the computation of the transmis-
sion.
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sider two situations (Figs. 11 and 12) in which the same
crystal has been rotated with an angle of 90°. Figure 13
shows the transmission of these two crystals illuminated
by a plane wave in normal incidence. Only one transmis-
sion peak appears for the crystal of Fig. 12. The expla-
nation comes from the observation of the field maps of the
resonant modes. Since the modes are characteristic of
the structure (they are solutions of Maxwell’s equations
with no incident field), they are obviously independent of
any rotation of the crystal. We have found two modes for
the complex wavelengths lp1 5 8.8335 1 i0.0162 and lp2
5 9.3210 1 i0.0159. Figures 14 and 15 show the real
part of the complex field for these two modes. The first
one (Fig. 14) is symmetrical with respect to the horizontal
symmetrical axis of the crystal, whereas the second one
(Fig. 15) is antisymmetrical. When the crystal of Fig. 12

Fig. 10. Decimal logarithm of the transmission T versus the
wavelength for the crystals of Figs. 4 (solid curve), 8 (dashed
curve), and 9 (dotted curve). Note that the wavelength sam-
pling pitch is equal to 0.05, with some extra points near the
peaks.

Fig. 11. Crystal with two defects. The segment below the
structure is the one used for the computation of the transmis-
sion.
is illuminated in normal incidence, the antisymmetrical
mode cannot be excited, and consequently no transmis-
sion peak occurs for the wavelength l 5 Re(lp2).

It is worth noting that in Section 4 the location of the
defects has been chosen in order to get rid of these sym-
metry selection rules.

6. CONTROLLED EMISSION OF TWO-
DIMENSIONAL CRYSTALS
Two-dimensional photonic crystals can be used to obtain
light-emitting semiconductor devices with enhanced prop-
erties. For instance, by controlling the spontaneous
emission, it should be possible to design thresholdless la-
ser diodes.6,8,16 One of the problems is to enhance emis-
sion into modes that escape from the material. This en-
hancement must occur into a narrow spectral region and
into specific directions.

For handling this problem, let us consider the structure
of Fig. 16; the source is an infinitely thin wire perpendicu-

Fig. 12. Same crystal as that of Fig. 11, but rotated 90°. The
segment below the structure is the one used for the computation
of the transmission.

Fig. 13. Decimal logarithm of the transmission T versus the
wavelength for the crystals of Figs. 11 (solid curve) and 12
(dashed curve).
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lar to the figure plane, and the incident field is given by
Eq. (9). This source is located in a microcavity obtained
by removing one cylinder, and this cavity lies close to the
limits of the crystal, in order to favor extraction of light in
the direction normal to the boundary of the crystal. The
crystal has the same parameters as those in Sections 3–5.
For this structure (without the source), we find a resonant
mode for the complex wavelength lp 5 9.0575 1 i0.015.
Figures 17 and 18 are obtained when the wire source has
a wavelength equal to Re(lp). The Poynting vector map
(Fig. 17) shows that the energy goes outside the crystal
through a narrow exit (approximately 1 wavelength
wide). Thus diffraction plays a vital role, and the radia-
tion pattern at infinity shows a rather wide range of ap-
proximately 60° (Fig. 18). We have also tried some other
structures with two or three aligned defects in the crystal,
but the results are very similar from the point of view of
the angular range of scattered energy.

We now consider the structure of Fig. 19. In the re-
gion 0 , y , 20.8, the crystal has the same parameters
as those above (the vertical distance between two horizon-

Fig. 14. Real part of the complex field for the mode associated
with lp1 5 8.8335 1 i0.0162 (the crystal is placed as in Fig. 11).

Fig. 15. Real part of the complex field for the mode associated
with lp2 5 9.3210 1 i0.0159 (the crystal is placed as in Fig. 11).
tal grids is A3d/2 ' 3.464). In the region 20.8 , y
, 48.1, the crystal has been slightly expanded in the ver-
tical direction in such a way that the vertical distance be-
tween two horizontal grids is 3.9. The horizontal spacing
d 5 4 is unchanged, and the cylinder characteristics are
still the same (radius r 5 0.6, optical index n 5 2.9).
The cavity is obtained here by removing four cylinders.

Let us first give the results obtained by inserting a wire
source inside the microcavity of Fig. 19. Figures 20–22
are obtained by locating the thin-wire source at the point
with coordinates (x 5 0, y 5 12.7). The wavelength of
this source is l 5 7.934. These three figures show, re-
spectively, the total electric-field modulus, the Poynting
vector map, and the radiation pattern at infinity. The re-
sult is that the energy now flows outside the crystal
through a wide aperture (Fig. 21). Consequently, diffrac-
tion is much less important than in the preceding ex-
ample, and the angular range of the radiation pattern is
less than 10° wide (Fig. 22). Figure 20 shows that the
structure behaves as a resonator. A system of stationary
waves is in place between two fictitious interfaces: the

Fig. 16. Wire source located in a cavity close to the limits of the
crystal.

Fig. 17. Poynting vector map for the crystal of Fig. 16. The
wavelength of the wire source is l 5 Re(lp) 5 9.0575.
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plane between the regularly spaced crystal and the ex-
panded crystal, and the plane between the expanded crys-
tal and vacuum. Looking at Figs. 20 and 21, we can eas-
ily see that the width of the outgoing energy path is in
fact limited by the dimensions of the structure, which
means that the radiation pattern at infinity will become
sharper for larger structures.

Let us go now to some more detailed explanations of
this phenomenon. One of the key ideas is that the ex-
panded crystal is able to select the direction of propaga-
tion.

Figure 23 compares, in normal incidence, the transmis-
sions of a regularly spaced crystal (same characteristics
as those in the 0 , y , 20.8 region of Fig. 19; i.e., the
vertical distance between two horizontal grids is A3d/2
' 3.464) and of a crystal expanded in the vertical direc-
tion (same characteristics as those in the 20.8 , y
, 48.1 region of Fig. 19; i.e., the vertical distance be-

Fig. 18. Radiation pattern at infinity for the crystal of Fig. 16
(polar plot of the intensity at infinity versus the emitting angle).
The wavelength of the wire source is l 5 Re(lp) 5 9.0575.

Fig. 19. Superposition of a hexagonal photonic crystal (0 , y
, 20.8) and of a vertically expanded crystal (20.8 , y , 48.1).
The cavity is obtained by removing four cylinders.
tween two horizontal grids is 3.9); both crystals have no
defect. Expanding the crystal globally shifts the gap.
From this figure it can be concluded that expanding the
crystal allows the wavelength l 5 7.934 to propagate in
the normal (vertical) direction.

Figure 24 compares, for increasing incidences (u inc

5 0°, 10°, 20°), the transmission of the expanded crys-
tal. Focusing on the particular value l 5 7.934, we can
see that the transmission sharply decreases when the in-
cidence is increased.

Broadly speaking, it can be said that the regularly
spaced crystal at the bottom of Fig. 19 (in the 0 , y
, 20.8 region) does not allow propagation of the wave-
length l 5 7.934 for any direction, whereas the expanded
crystal at the top of the same figure (in the 20.8 , y
, 48.1 region) allows propagation of this wavelength in
the vertical direction only.

This phenomenon can be interpreted in a simple way.
Let us start from the regular photonic crystal with hex-
agonal symmetry, and let us expand this crystal in the
horizontal and vertical directions with a similarity factor
a. By a straightforward rule of scale, the new gap will be

Fig. 20. Total electric-field modulus for the crystal of Fig. 19.
The wavelength of the wire source is l 5 7.934.

Fig. 21. Poynting vector map for the crystal of Fig. 19. The
wavelength of the wire source is l 5 7.934.
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rigorously deduced from the initial one by multiplying the
wavelengths by the same factor a. One can conjecture
that readjusting the radius of the cylinders to the initial
value will not strongly change this conclusion. Conse-
quently, expanding the crystal in the vertical direction
only should change the band gap in the same way (with
multiplying factor a) for propagation in this vertical direc-
tion, whereas the gap in the horizontal direction of propa-
gation should not be changed drastically.

It is also worth pointing out how the particular wave-
length l 5 7.934 has been selected. We have seen above
that small cavities have resonant wavelengths close to
the center of the gap. Such cavities cannot be used here,
since we must work at a wavelength close to the boundary

Fig. 22. Radiation pattern at infinity for the crystal of Fig. 19
(polar plot of the intensity at infinity versus the emitting angle).
The wavelength of the wire source is l 5 7.934.

Fig. 23. Decimal logarithm of the transmission T versus the
wavelength for the regularly spaced crystal (dashed curve) and
for the vertically expanded crystal (solid curve) for normal inci-
dence. The vertical line corresponds to l 5 7.934.
of the gap (see Figs. 23 and 24). Furthermore, this wave-
length must be a resonant wavelength of the cavity. This
is the reason why the cavity is obtained here by removing
four cylinders. It is much larger than in Sections 3–5
(where only one or two cylinders were removed). The
consequence is that several resonant modes appear, and
the probability of getting a resonance at the desired wave-
length is much greater. Figure 25 gives the transmission
for the structure of Fig. 19, illuminated by a plane wave
in normal incidence. The peaks give the real part of the
complex resonant wavelengths, and the result is that one
of these wavelengths is close to the boundary of the gap.
This wavelength, l 5 7.934, has been chosen for this
study (the complex wavelength for the corresponding
mode has been found to be lp 5 7.934 1 i0.018). The
question that arises is the following: Could a structure
including a cavity and an expanded crystal be monomode?
We are currently trying to answer it.

Fig. 24. Decimal logarithm of the transmission T versus the
wavelength for the vertically expanded crystal for different inci-
dences. The vertical line corresponds to l 5 7.934.

Fig. 25. Decimal logarithm of the transmission T versus the
wavelength for the crystal of Fig. 19 for normal incidence. The
marked peak corresponds to the wavelength l 5 7.934.
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There is additional interesting information to draw out
from the study of the resonant modes. Indeed, the mode
field map for lp 5 7.934 1 i0.018 shows some regions
where the electromagnetic field is very strong. In fact,
this map is very similar to that given in Fig. 20. Putting
the wire source at a place where the resonant mode is
strong gives better coupling between the source and the
structure. Consequently, the extraction of energy out-
side the structure is much greater. This is the reason
why the wire source has been located at the point with co-
ordinates (x 5 0, y 5 12.7), where the resonant mode is
strong. It has been verified that if the source is placed at
the center of the cavity, where the resonant mode ampli-
tude is much less, the radiation pattern at infinity keeps
approximately the same shape as that given in Fig. 22,
but the maximum value of the intensity (radiated in the
90° direction) falls to approximately 100 (instead of ap-
proximately 340 as in Fig. 22).

7. CONCLUSION
An efficient numerical tool for the study of microcavities
inside a two-dimensional photonic crystal has been pre-
sented. The method is able to provide a complete de-
scription of all the electromagnetic quantities for crystals
of finite size, with short computation time and good pre-
cision. All features of this method are used in Section 6,
which presents an original way for the control of emission
by two-dimensional crystals. Even though the results
presented in Section 6 are somewhat academic, the key
idea of an expanded crystal could open new directions for
people interested in angular-selective devices. Recent
experimental studies (as, for instance, those described in
Ref. 8) show that the progress of technology makes it pos-
sible to design such structures in the optical domain. An
experimental verification in the microwave domain of
some results obtained in this paper is in progress in our
laboratory.
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