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Theoretical study of photonic band gaps in woodpile crystals
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We investigate numerically the existence of photonic band gaps in woodpile crystals. We present a numerical
method specifically developed to solve Maxwell’s equations in such photonic structures. It is based upon a
rigorous mathematical formulation and leads to a considerable improvement of the convergence speed as
compared to other existing numerical methods. We tested our method by comparing the calculated reflectivity
with measurements on an actual sample, i.e., a silicon woodpile photonic crystal designed for 1.5mm wave-
length. Excellent agreement is obtained, provided the main structural imperfections of the sample are taken into
account. We show that the existence of photonic band gaps in woodpile crystals requires an index contrast
higher than 2.0560.01. The effects of imperfections of such structures with an index contrast equal to 2.25 are
also investigated. Thus, the relative band gap width falls from 3.5% to 2.2% with structurals imperfection
similar to those of the sample.
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I. INTRODUCTION

The main motivation for studying photonic crystals
their possible ability to inhibit spontaneous photon emiss
@1,2#. This is a consequence of the existence of photo
band gaps@3,4#, i.e., frequency intervals, where the propag
tion of the electromagnetic field is forbidden, whatever t
polarization and the propagation direction. Indeed, it is
pected that an excited atom, embedded in a photonic cry
cannot radiate if the atomic transition frequency falls in
photonic band gap since the electromagnetic energy ca
propagate away@2#. In addition to these physical argumen
rigorous theoretical studies@5,6# showed that the single
photon decay rate is proportional to the local density
states. Since this local density of states vanishes in a ph
nic band gap, these theoretical studies confirm the possib
for inhibiting spontaneous emission.

The existence of a photonic band gap is the result o
periodic modulation, together with sufficient contrast of t
permittivity ~we refer to its square root as the index!. From
the experimental side, the main difficulty is to realize thre
dimensional periodic structures having a reasonable accu
in the periodicity, combined with a sufficiently high permi
tivity contrast in the optical or infrared regime. At present
is thought that the most promising current experimental
alizations are face-centered-cubic lattices of microsphere
alized using colloid techniques@7,8# as inversed opals@9,10#,
and woodpile structures@11–13#.

Using a suitably adapted Korringa-Kohn-Rostock
method@14#, it has been shown that an index contrast hig
than 2.85@15# is required to create a photonic band gap
face-centered-cubic lattices of microspheres. Thus, trans
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ent dielectric materials are prohibited in the optical ran
This is why microspheres made of metals or semiconduc
have been considered. A numerical study showed the e
tence of a wide photonic band gap for the optical range
absorption is neglected@16#. However, a quantitative esti
mate of the effects of absorption remains necessary s
spontaneous emission cannot be strictly inhibited in the p
ence of absorption@17#. On the other hand, the concept
local density of states can be generalized to absorptive
terials@18#, it determines whether or not absorption is neg
gible.

We consider in this paper, the second type of promis
structures, woodpile crystals. The latter have been stud
intensively by numerical methods, using an expansion of
electromagnetic field and the permittivity into the Fourier~or
plane-waves! basis. This expansion was used to predict ph
tonic band gap edges@19#, the effect of several structura
imperfections on such edges@20#, the decay rate for single
photon emission in infinite structures@21# and reflectivity
and the inhibition of spontaneous emission for finit
thickness structures@22#. However, the use of a plane-wav
expansion leads to poor convergence, due to the discon
ous nature of both the electromagnetic field and the perm
tivity @23#. For this reason, we have developed a numer
method well adapted to woodpile structures. Here, the e
tromagnetic field is expanded using an ‘‘exact eigenfunctio
basis’’ for which an exact representation of the permittivity
available@24–26#.

Since this paper covers a broad field~from a mathematical
formulation to an experimental comparison!, we present in
Sec. II a summary of the most important ideas and resu
Next, in Sec. III, we give a self-consistent presentation of
numerical method we have developed. In particular, we d
cuss the underlying mathematical formalism. Then, in S
IV, we verify our method by performing a convergence te
and by checking energy conservation. In addition, we co
pare in Sec. IV C the directly calculated reflectivity curv
©2003 The American Physical Society01-1
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with experimentally measured data on a silicon woodp
photonic crystal designed for a wavelength of 1.5mm @12#.
Here, we benefit from the efficiency of the method, whi
permits us to take into account the structural imperfection
the sample and the frequency dependence of the silicon
mittivity. These results complement our previous study
this experimental setup, presented in Ref.@27#. Finally, in
Sec. V, we study the existence of photonic band gaps
woodpile devices. Thus, we conclude that it is possible
construct woodpile structures with photonic band gaps, us
ordinary materials, transparent in the optical range and,
consequence, that it is possible to suppress spontan
emission in the optical regime.

II. STATEMENT OF THE MAIN RESULTS

A. The numerical method

We show here that our method is better adapted to
case of woodpile structures than the plane-wave met
@28–30#, the Korringa-Kohn-Rostocker~KKR! method@14#
and the method based on the scattering matrix@22,31#.

1. Existing numerical methods

The plane-wave method@28–30# is the most frequently
used numerical method for photonic crystals and, in parti
lar, for woodpile devices. It involves an expansion in t
Fourier ~or plane-waves! basis for the electromagnetic fiel
and the permittivity in the three space directions. Recall t
if M is the number of Fourier coefficients used to expan
periodic function in one space direction, then the total nu
ber of plane-waves growth withN5M3. The electromag-
netic field and the permittivity being discontinuous, conv
gence is poor andN must be very high~more than 737
37 for an error of only a few percent@23,32#!, leading to
considerable calculation time. Moreover, this method can
handle frequency dependent or complex permittivities a
in addition, does not provide quantities associated w
finite-size structures~such as reflectivity or emitted power b
embedded atoms! which can be compared to experimen
measurement.

The KKR method, adapted to Maxwell’s equations@14#,
gives a solution to many problems encountered with
plane-wave method. Convergence is fast~it requires about
333 spherical waves, while the plane-wave method requ
73737 plane waves! and it can deal with frequency depe
dent and complex permittivity@16,33#. Moreover, in tandem
with results about sums of spherical waves for tw
dimensional lattices@34#, this method makes it possible t
solve Maxwell’s equations for finite-width structures@35#.
However, the KKR method, with its emphasis on spherica
cylindrical symmetry, is poorly adapted to woodpile crysta

The most efficient method currently used for the study
woodpile structures is, to our knowledge, based on the s
tering matrix@22,31#. Indeed, this method can deal with fre
quency dependent and complex permittivities and can d
with quantities associated with finite-thickness structu
@31#. Moreover, the plane-wave expansion is only used
two directions of the real space, while Maxwell’s equatio
06660
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are solved in the third direction@31#. Instead of being pro-
portional toM3 nowN5M2 ~and the typical required num
ber of plane waves is 737 to obtain a 1% error for the firs
band@22#!.

2. The new numerical method

Our numerical method is similar to the one based on
scattering matrix@22,31# ~and hence has the same charact
istics!, but with two fundamental improvements. The first
a consequence of the stable algorithm presented in a prev
paper@36#. Using the sophisticated techniques used for gr
ings in Ref.@37#, the latter has the feature to solve Maxwel
equations without numerical instabilities for both the infinit
~in three space direction! and finite-thickness~i.e., infinite in
two space directions! cases. Thus, we refer to our gener
numerical framework as the ‘‘grating method.’’ The seco
improvement relies on a generalization of the method
‘‘exact eigenvalues and eigenfunctions’’ employed in t
study of lamellar grating@24,26#.

The ‘‘grating method’’ consists in first solving Maxwell’s
equations for a finite-thickness photonic crystal~or a grat-
ing!, and then imposing boundary conditions at the bou
aries of the top and the bottom planes which delimit t
grating. We now denote any quantity that is contained
these planes by tangential. By imposing different bound
conditions, we are able to estimate different quantities from
single numerical code.

~1! The outgoing wave condition@31,37# gives the reflec-
tivity and the transmittance.

~2! The ‘‘point current source’’ condition@31,38# gives the
Green’s function~i.e., the electromagnetic field radiated by
point current source and then the local density of states!.

~3! The Bloch boundary condition@36# gives the disper-
sion relation and other quantities for infinite structures
three space directions. We think that imposing this condit
without numerical instabilities is a fundamental improv
ment since it allows convergence tests that ensure the a
racy of the results.

Moreover, the stable algorithm can provide a very imp
tant reduction of calculation time. Indeed, for a given fr
quency and two tangential components of the Bloch wa
vector, the algorithm provides all the third components of
latter. The Brillouin zone is then reduced to its projecti
onto the tangential components plane~a volume is reduced to
a surface in the three-dimensional case and a surface i
duced to a line in the two-dimensional case!.

The second improvement consists in benefiting from
the sophisticated techniques developed in the numer
study of gratings@37#. The numerous techniques develop
in the study of gratings are now mature since the stableSand
R algorithms @39# of continuation into the third direction
have been established and since the convergence of the
rier series has been systematically improved@40# when they
are used. Among these available numerous techniques
mention the efficient integral@41# and differential@42,43#
methods that allow one to solve general problems. We a
mention the modal method@44,45# that takes advantage o
the piecewise invariance in the third direction of the perm
tivity ~this modal method is a generalization of the meth
1-2
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based on the scattering matrix presented in Ref.@31#!. For
woodpile structures, we have generalized the method of
act eigenvalues and eigenfunctions in order to take adv
tage of the single variable dependence of the permittivity
each layer.

The method of exact eigenvalues and eigenfunctions
been developed for the numerical study of lamellar grati
@24#. Taking advantage of the geometry, the electromagn
field is expanded on a suitable basis and the permittivity
exactly represented. Since these pioneering works, the m
contribution to this method is certainly its rigorous extens
to conical mountings@26#. This extension gives the possibi
ity to generalize this method to woodpile structures and t
to benefit of its advantages. The fast convergence speed
served for the lamellar grating is also found for woodp
structures, leading to a very important reduction of calcu
tion time: the method requiresN5M25333 of basis func-
tions for an error around 1% for frequencies correspond
to the first band number, while 737 plane waves are re
quired provided the most efficient existing method@22# is
used. This improvement is very useful since it allows us
consider more complicated structures that are closer to
experimental realizations.

B. Results

1. The mathematical formulation

The first result of the mathematical formulation is that,
each layer, there is a decoupling of the vector field equati
into two independent scalar equations. Our second resu
the introduction of a continuation procedure, permitting us
solve an elliptic evolution equation. With these results,
obtain an expression for Maxwell’s equations for woodp
structures in terms of simple scalar operators and it is p
sible to determine the eigenvalues and the eigenfunction
these operators exactly.

2. Experimental verification of the numerical method

In this paper, we compare our numerical results with
experimental measurements of the reflectivity on silic
woodpile photonic crystal@12# for wavelengths ranging from
1.0 mm to 1.7mm.

The comparison shows good agreement for the up
band gap edge and for the reflectivity for frequencies in
gap ~the difference is always smaller than several perce!
except for a deep peak in the band gap in the experiment
show that this peak is not the consequence of dispersio
silicon ~indeed, the effect of silicon dispersion can be n
glected since the frequency dependence of the permittivit
quite small in the considered frequency range! but of a struc-
tural imperfection of the experimental setup. A scann
electron microscope image@27# shows that every other sili
con rod which constitute the woodpile crystal is sligh
shifted as mentioned in Ref.@12#. Taking into account this
structural imperfection, very good agreement is obtained
the position, width, and depth of the peak. Finally, as
ported in Ref.@27#, the theoretical explanation of this peak
due to the fact that the structural imperfections lead to
06660
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woodpile crystal with tangential spatial periods twice t
original ones.

However, the comparison shows significant differenc
between the theoretical results and the experimental m
surements of the reflectivity for wavelengths outside
band gap, even if we take into account the silicon dispers
and ~or! the structural imperfections described above. W
conclude that, in this wavelength range, the many slight fl
tuations of the structure lead to important perturbatio
which blur the effect of the periodic arrangement.

3. Numerical study of photonic band gaps in woodpile structure

We investigate the relative band gap width in fac
centered-cubic woodpile crystals similar to the experimen
devices@11–13#. A unit cell of these face-centered-cubic la
tices consists of a dielectric background surrounding t
identical, perpendicular, nonoverlapping, and contiguous
electric rods with rectangular cross section. The relevant
rameters are then the filling ratio~the ratio of the rod width
and the unit cell width! and the index contrast~the ratio of
the dielectric rod’s index and the background’s index!. Vary-
ing these parameters, we found that the minimal index c
trast required to open a band gap is equal to 2.0560.01 ~a
filling ratio equal to 0.4360.01 is then required!. Note that
we made convergence tests to ensure the accuracy o
result.

Finally, we consider a woodpile crystal with a relative
low index contrast, equal to 2.25, which can correspond to
ordinary transparent material~such as Ta2O5) and air in the
optical range. We show that, in this case, the relative b
gap width is equal to 3.5%60.1% for the optimal filling
ratio, equal to 0.3860.02. Taking into account a structura
imperfection similar to the one of the actual silicon woodp
crystal @12# considered in the experimental validation of th
method, we show that a band gap still opens for a devia
as far as 18% of the unit cell width. In particular, for
deviation of 10% of the unit cell width~this deviation is
similar to the one of the considered experimental silic
woodpile crystal!, the relative band gap width is equal t
2.2%60.1%.

III. THE METHOD OF ‘‘EXACT EIGENVALUES AND
EIGENFUNCTIONS’’

In this section, we give a self-consistent presentation
the extension to woodpile structures of the method of ex
eigenvalues and eigenfunctions derived for the gratings
conical mountings in Ref.@26#. We show how to obtain in
the presence of woodpile structures a large class of solut
Ev of the Helmholtz equation

@v22«21
“3m21

“3#Ev50, ~1!

where« is the permittivity,m is the permeability, andv is
the frequency. For the sake of simplicity, we only consid
real frequency and real, strictly positive and bounded, p
mittivity and permeability since the generalization to a
complex valued functions does not differ from the one giv
in Ref. @26#:
1-3
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vPR, 0,«2<«<«1 , 0,m2<m<m1 , ~2!

where«2 , «1 , m2 , andm1 are positive real numbers.

A. Notations

1. Geometry

Throughout this paper, we use an orthonormal ba
(e1 ,e2 ,e3): every vectorx in R3 is described by its three
componentsx1 , x2, and x3. The structure we consider i
periodic in two directions with spatial periodsd15d1,1e1 and
d25d2,2e2:

n~x1dj !5n~x!, xPR3, ~3!

where n5«,m, and j 51,2. The unit cell of the two-
dimensional lattice associated with this structure is

V5$x5a1d11a2d2ua1 ,a2P@21/2,1/2#%. ~4!

Then, a woodpile structure is a stack in the third direction
layers, where« and m are functions dependent on a sing
variable, the latter beingx1 or x2 ~Fig. 1!. In practice, each
layer is made up from infinite parallel rods with rectangu
cross section~Fig. 2!. Thus, the functions« andm are piece-
wise constant.

2. Electromagnetic field

In order to obtain a set of first-order differential equatio
from Eq. ~1!, we define

Hv5~vm!21
“3Ev . ~5!

Note that this quantity differs from the usual ‘‘harmonicH
field’’ by the complex numberi.

FIG. 1. A woodpile structure made of three stacked layers.

FIG. 2. A layer made of two rods per unit cell;« and m are
piecewise constant and periodic functions of the single variablex1.
The thickness of the layer ish.
06660
is
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We investigate solutionsEv , Hv , whose restrictions in
every horizontal plane~normal toe3) are square integrable

E
R2

uFv~x1 ,x2 ,x3!u2dx1dx2,`, x3PR, ~6!

whereFv5Ev ,Hv .
The first consequence of Eq.~6! is the possibility to per-

form a Floquet-Bloch decomposition associated with
two-dimensional periodicity~3!. Thus, we investigate solu
tions E, H that satisfy

E
V
uF~x1 ,x2 ,x3!u2dx1dx2,`, x3PR, ~7!

with the partial Bloch boundary condition

F~x1dj !5exp~2ipkj !F~x!, xPR3, ~8!

where (k1 ,k2) is fixed in @21/2,1/2#2, F5E,H, and j
51,2. Note that for the symbolsE andH, we have omitted
the fixed parametersv, k1, and k2 in order to clarify the
further calculations.

The second consequence of Eq.~6! @or Eq.~7!# is that the
restrictions to every horizontal plane of“3E and“3H are
locally square integrable as well@from Eqs.~1!, ~2!, and~5!#.
Then, for all i , j 51,2,3 andiÞ j , Ei andHi are continuous
functions of the variablexj . In particular, the tangentia
componentsE1 , E2 , H1, andH2 of E andH are continuous
functions of the variablex3. It follows that it is possible to
solve Maxwell’s equations in a stack of layers by the follo
ing two steps: the first step consists in solving Maxwe
equations in each layer independently and then the sec
step consists in connecting each independent solution u
the continuity ofE1 , E2 , H1, andH2.

B. The mathematical formulation

In the following Secs. III B 1, III B 2, and III B 3, we
consider a single layer of rods bounded by the horizon
planes defined by the equationsx350 andx35h ~Fig. 2!,
where« andm are functions of the variablex1 only ~the case
where« andm depend onx2 is similar!:

0<x3<h⇒«~x!5«1~x1!, m~x!5m1~x1!. ~9!

1. Decoupling of the field in a layer

With definition ~5! and notation~9!, Eq. ~1! is equivalent
to the set of first-order equations

E5~v«1!21
“3H, H5~vm1!21

“3E, ~10!

in the considered layer. After eliminating the vertical comp
nentsE3 andH3, one obtains the equation

]3FF1

F2
G5F2]1s1

21]2 s11]1s1
21]1

2s12]2s1
21]2 ]2s1

21]1
G FF1

F2
G , ~11!

where] j is the partial derivative with respect to the variab
xj ( j 51,2,3) and
1-4
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m1 0 G , F j5F Ej
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G , j 51,2. ~12!
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Since the functions«1 andm1 ~and then the matrixs1) are
x3 independent in a single layer, Eq.~11! implies that
]3
2FF1

F2
G5F2s1

22]1s1
21]1s12s1]2s1

21]2 s1]2s1
21]12]1s1

21]2s1

s1]1s1
21]22]2s1

21]1s1 2s1
22]2s1

21]2s12s1]1s1
21]1

G FF1

F2
G . ~13!
o
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e-

a
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Since the matrixs1 is x2 independent in the considere
layer, we haves1

21]2s15]25s1]2s1
21, so from the last

equation,

]3
2F152L1F1 , L15FLm1 0

0 L«1

G , ~14!

where

Ln1
5v2«1m11]1n1

21]1n11]2
2 , n15«1 ,m1 . ~15!

Solving Eq.~14! will provide the vectorsF1 and its first
derivative]3F1. Moreover, from Eq.~11!, the vectorsF1 ,
F2, and]3F1 are related. Maxwell’s equations are then r
duced to Eq.~14!, which can be considered as two scalar a
independent equations for the componentsE1 andH1. This
remarkable phenomenon of decoupling of the field in a thr
dimensional structure makes the solution easier on both
mathematical and numerical sides.

2. Continuation of the field in the third direction

In this section, we solve Eq.~14! using a suitable continu
ation procedure. In order to clarify the calculations of th
section, we rewrite this equation as the evolution equatio

d2c

dt2
~ t !52L1c~ t !, ~16!

in the Hilbert space H15Hm1
% H«1

, where Hn1

5Lk1 ,k2

2 (V,n1dx1dx2 ;C) is the set of locally square inte

grable and complex valued functions with the boundary c
dition ~8! and the inner product̂•,•&n1

:

f,f8°
1

uVu EV
f~x1 ,x2!f8~x1 ,x2!n1~x1!dx1dx2 ,

~17!

whereuVu5d1,1d2,2 andn15«1 ,m1. First, we remark thatL1
defines a self-adjoint operator inH1. Indeed, it is easy to
verify that L1 is a symmetric and semibounded opera
@L1<v2«1m1 from Eqs. ~2!, ~14!, and ~15!#: the self-
adjointness can be shown by quadratic form techniques@46#.
SinceL1 is not a positive operator, we cannot use the us
continuation procedure@47,48# to solve the Eq.~14!. On the
numerical side, this problem emerges with the instabilities
the transfer matrix. However, suitable numerical contin
-
d

-
he
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r

al

f
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tion algorithms@39# that permit to solve equations similar t
Eq. ~14! have been developed. So, inspired by these num
cal algorithms, we will define a suitable continuation proc
dure.

We define for alll in (2`,v2«1m1# and for alls,t such
that 0<utu<usu<h/2,p/(4vA«1m1) two real valued
functions f t,s andgt,s given by

f t,s~l!5
cos@Al~ t1s!#

cos@Al2s#
, ~18a!

gt,s~l!5
sin@Al~ t2s!#

Alcos@Al2s#
. ~18b!

Note that cos(Al) and sin(Al)/Al can be expressed as
power series inl and that functionsf t,s and gt,s are uni-
formly bounded ~with respect to s, t, and l) by
1/cos(hvA«1m1). Since L1 is self-adjoint and semi-
bounded, we can define, by the functional calculus@46#, the
operatorsf t,s(L1) and gt,s(L1) which are self-adjoint and
uniformly bounded. Now, we can define the propagator

R~ t,s!5F f t,s~L1! 2gt,s~L1!

2L1gt,s~L1! f t,s~L1!
G , ~19!

which has the usual properties of propagators@47# and,
which satisfies

dR

dt
~ t,s!52F0 1

L1 0GR~2t,s!, ~20!

since f t,s andgt,s are infinitely differentiable with respect to
t ~ands). Finally, if we define

C~ t !5R~ t,s!C~s!, C~ t !5F c~2t !

~dc/dt!~ t !
G , ~21!

then the combination of Eqs.~20! and ~21! shows thatc(t)
satisfies Eq.~16! for all t in @2usu,usu#. In particular, taking
Eq. ~21! with s52h/2 andt5h/2, one obtains the relation
shipC(h/2)5R(h/2,2h/2)C(2h/2), i.e., a relationship be
tween the values ofc anddc/dt at the boundaries of a laye
of thicknessh ~Fig. 2!. Note that the propagatorR(h/2,
2h/2) is similar to theR matrix used in theR algorithm@39#.
1-5
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3. Solution of Maxwell’s equations in a layer

We continue the calculations of Sec. III B 1. Sin
the equations are considered in the Hilbert spaceH1 ,
F j (•,•,x3) and (]3F j )(•,•,x3) are, respectively, denoted b
F j (x3) and (]3F j )(x3), j 51,2. From relation~21! the val-
ues ofF1 and ]3F1 at the planes~defined byx350 andx3
5h) bounding the considered layer of thicknessh are related
by

F F1~0!

~]3F1!~h!
G5R~h/2,2h/2!F F1~h!

~]3F1!~0!
G . ~22!

Finally, using that, from Eq. ~11!, (]3F1)(x3)5(L1

2]2
2)s1

21F2(x3)2]1s1
21]2F1(x3), we obtain the following

relation for the tangential components of the field:

M1~h!FF1~0!

F1~h!
G5N1~h!Fs1

21F2~0!

s1
21F2~h!

G , ~23!

where, denotingf 2h/2,h/2 and g2h/2,h/2 , respectively, byf h
andgh ,

M1~h!5F12gh~L1!]1s1
21]2 f h~L1!

f h~L1!]1s1
21]2 L1gh~L1!2]1s1

21]2
G ,

N1~h!5F2gh~L1!~L12]2
2! 0

f h~L1!~L12]2
2! 2~L12]2

2!
G . ~24!

Relation ~23! gives the general solution of Maxwell’
equations in a layer of thicknessh,p/(2vA«1m1). Note
that this limitation onh is introduced to ensure the absen
of a division by zero in definition~18! of functions f t,s and
gt,s . Without this limitation, a discontinuity could appear
propagator~19! leading to the impossibility for the continu
ation of the field. Finally, when the layer thicknessh exceeds
the valuep/(2vA«1m1), a solution can be found by divid
ing the layer into ‘‘sublayers’’ of sufficiently small thicknes

4. Bloch solution of Maxwell’s equations in a woodpile crystal

In this section, we consider a simple woodpile crys
consisting of an infinite stack of identical ‘‘superlayers
each ‘‘superlayer’’ consisting of a stack of a top and a bott
layer ~Fig. 3!.

These two layers are identical after a rotation of 90°
one of them. Now, suppose that the top layer is similar to

FIG. 3. The ‘‘superlayer’’ of a simple woodpile crystal. Th
superlayer is made of two layers that are identical after a rotatio
90° of one of them.
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one considered in Secs. III B 1, III B 2, and III B 3. Then, th
bottom layer is delimited by the planes defined by equati
x352h andx350 ~Fig. 3!, and functions« andm satisfy

2h<x3<0⇒«~x!5«2~x2!, m~x!5m2~x2!, ~25!

where«2(t)5«1(t) andm2(t)5m1(t) for all real t since the
two layers are identical. We denote bys2 the associated
matrix that is analogous to the matrixs1 ~12!, and by

L25s2
21]2s2

21]2s21]1
2 ~26!

the operator associated with the bottom layer which is an
gous to the operatorL1 ~14! and ~15!. L2 defines a self-
adjoint operator in the Hilbert spaceH25Hm2

% H«2
, where

Hn2
5Lk1 ,k2

2 (V,n2dx1dx2 ;C), n25«2 ,m2.

The general solution of Maxwell’s equations in the to
layer satisfies~23! and, from a similar reasoning, the gener
solution of Maxwell’s equations in the bottom layer satisfi

M2~h!FF2~2h!

F2~0!
G5N2~h!Fs2

21F1~2h!

s2
21F1~0!

G , ~27!

where

M2~h!5F11gh~L2!]2s2
21]1 2 f h~L2!

2 f h~L2!]2s2
21]1 L2gh~L2!1]2s2

21]1
G ,

N2~h!5F2gh~L2!~]1
22L2! 0

f h~L2!~]1
22L2! 2~]1

22L2!
G . ~28!

At this stage, the combination of Eqs.~23! and~27! gives
the general solution of Maxwell’s equations in the superla
made of the two layers. These equations can be considere
four relationships between six elements ofH1 since, from
Eq. ~2!, this Hilbert space is isomorph toH2. In the general
case of an superlayer made ofm layers, one obtains 2m
relationships between 2m12 elements ofH1. So, in order to
obtain two additional relationships, the next step consists
imposing the condition at the boundaries of the ‘‘superlaye
i.e., at planes defined by equationsx35h and x352h.
Herein, we impose the periodic boundaries condition in or
to obtain Bloch solution in the crystal.

Let d35d3,1e11d3,2e21d3,3e3 be the third spatial period
of the woodpile crystal. Then, in addition to Eq.~3!, we have

n~x1d3!5n~x!, xPR3, ~29!

wheren5«,m, and d3,352h since the crystal is generate
by the superlayer of thickness 2h. Now, we define the trans
lation operatorT acting onH1 by

~Tc!~x1 ,x2!5c~x11d3,1,x21d3,2! ~x1 ,x2!PV.
~30!

So, finally, a Bloch solution in the woodpile crystal has
satisfy Eqs.~23!, ~27!, and

of
1-6
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FTF1~h!

TF2~h!
G5exp~2ipk3!FF1~2h!

F2~2h!
G , ~31!

wherek3 is fixed in @21/2,1/2#.

C. The numerical method

In this section, we give an explicit expression for theR
matrix associated with a stack of layers that can be u
directly in numerical computations. ThisR matrix gives the
general solution of the homogeneous Eq.~1!.

1. The expression of the R matrix for a single layer

We consider the same layer as in Secs. III B 1, III B
and III B 3. Appendix A shows how to determine in a gene
case the eigenvalues$lnunPN% of the operatorL1, the asso-
ciated eigenfunctions$fnunPN% and the set of functions
$cnunPN% defined by

cn5s1
21]1s1fn , L1fn5lnfn , nPN. ~32!

We denote bŷ •,•&H1
the inner product inH1. SinceL1 is

self-adjoint inH1, we can normalize its eigenfunctions su
that they form an orthonormal set

^fn ,fn&H1
51, ^fm ,fn&H1

50, mÞn. ~33!

The eigenfunctions of the operatorL1 are also eigenfunction
of the operators]2 and ]2

2 ~Appendix A!. Let $ ik2,nunPN%
and$2k2,n

2 unPN% be the associated sets of eigenvalues:

]2fn5 ik2,nfn , ]2
2fn52k2,n

2 fn , nPN. ~34!

For the sake of clarity, the operatorsM1(h) andN1(h) are
expressed in block forms.

M1~h!5FM1,11 0

M1,21 M1,22
G , N1~h!5FN1,11 N1,12

N1,21 N1,22
G .

~35!

Then, the expression of operatorsM1(h) and N1(h) devel-
oped on the eigenfunctions ofL1 can be deduced from th
coefficients

^fm ,M1,11fn&H1
5^fm ,fn&H1

2gh~lm!ik2,n^cm ,s1
21fn&H1

,

^fm ,M1,12fn&H1
5 f h~lm!^fm ,fn&H1

,

^fm ,M1,21fn&H1
5 f h~lm!ik2,n^cm ,s1

21fn&H1
,

^fm ,M1,22fn&H1
5lmgh~lm!^fm ,fn&H1

2 ik2,n^cm ,s1
21fn&H1

,

^fm ,N1,11fn&H1
52gh~lm!~lm1k2,m

2 !^fm ,fn&H1
,

^fm ,N1,21fn&H1
5 f h~lm!~lm1k2,m

2 !^fm ,fn&H1
,

06660
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^fm ,N1,22fn&H1
52~lm1k2,m

2 !^fm ,fn&H1
, ~36!

where m,n are in N, and where we used the identitie
^fm ,@]1s1

21#fn&H15^cm ,s1
21fn&H1 , f h(L1)fm

5 f h(lm)fm , andgh(L1)fm5gh(lm)fm .
Numerically, the operatorsM2(h) and N2(h) are trun-

cated in order to get matrices. Hence, we have to choo
finite set of eigenvalues and eigenfunctions. From Eq.~14!,
each eigenvalue ofL1 is either an eigenvalue ofL«1

or an

eigenvalue ofLm1
: we denote the set of eigenvalues of the

scalar operators by$l«1 ,pupPN% and$lm1 ,pupPN%, respec-
tively, and we number them such that

v2«1m1>ln1,1>ln1,2•••>ln1 ,p•••, ~37!

wheren15«1 ,m1. Then, the considered set of eigenvalues

L1,N5$ln1,p
up<N,n15«1 ,m1%, ~38!

whereN is an integer. For alln51,2, . . . ,2N, the eigen-
value ln can be defined byln5l«1 ,p if n52p21 andln

5lm1 ,p if n52p, wherep51,2, . . . ,N. Let K̃N be the ma-
trix associated with the operatorK with coefficients
^fm ,Kfn&H1. The choice of the set of eigenvalue
~38! is justified since, for example, the difference betwe
the operator @ f h(L1)21# and the associated matri

@ f h(L̃1,N)21̃N# is less than 2max$exp(2Aul«1 ,Nuh),

exp(2Aulm1 ,Nuh)% if l«1 ,N andlm1 ,N are negative; the con
vergence is exponential for this compact operator.

Now, from coefficients~36!, we obtain the expression o
the R matrix associated with the considered layer

R̃1,N5F Ñ1,11,N 0

Ñ1,21,N Ñ1,22,N
G21F M̃1,11,N M̃1,12,N

M̃1,21,N M̃1,22,N
G . ~39!

Note that thisR matrix is expressed using the set of eige
functions ofL1 and the inner product̂•,•&H1

in H1. More-

over, from Eqs.~23!, ~35!, and ~39!, this matrix R̃1,N con-
nects the values ofF1 and s1

21F2 at the planes delimiting
the layer. Thus, expression~39! for the R matrix cannot be
used to connect the solution of the considered layer to
solutions of the adjacent layers. An expression in a ba
independent of the layer, is then necessary.

Let H be an Hilbert space isomorph toH1 and^•,•&H the
inner product in this new Hilbert space. In practice,H can be
Lk1 ,k2

2 (V,dx1dx2 ;C2), i.e., the set of locally square inte

grable andC2-valued functions with the boundary conditio
~8! and the usual inner product. Let$enunPN% be an ortho-
normal basis ofH ~in practice, this set can be the plan
waves basis since it will not lead to convergence problem
woodpile structures!. The expression of theR matrix in this
new basis is

R1,N5FQN
21 0

0 QN
21G R̃1,NFPN 0

0 PN
G , ~40!
1-7
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wherePN andQN are, respectively, the matrices with coe
ficients ^em ,fn&H and ^em ,s1fn&H , m,n51,2, . . . ,2N.
We denote bycN the column vector associated with the ve
tor c in H with coefficients ^en ,c&H , n51,2, . . . ,2N.
Then, from Eqs.~23!, ~35!, ~39!, and ~40!, we obtain the
relationship

FF2,N~0!

F2,N~h!
G5R1,NFF1,N~0!

F1,N~h!
G , ~41!

which gives the general numerical solution of Maxwel
equations in the layer.

2. The expression of the R matrix for a stack of layers

We consider here the same superlayer as in Sec. III
From the operatorsM2(h) andN2(h) ~28!, we obtain theR
matrix R2,N associated with the bottom layer. ThisR matrix
gives the relationship

FF2,N~2h!

F2,N~0!
G5R2,NFF1,N~2h!

F1,N~0!
G . ~42!
a-
re
y

er
e
is
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v
, w
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4.

In this section, we will show how to combine the two mat
cesR1,N andR2,N to obtain theR matrix associated with the
superlayer. This combination of the twoR matrices~or the
R-matrix algorithm@39#! can be considered as an associat
group law denoted by the symbol! @39#.

Similarly to R2,N ~41! and R1,N ~42!, the R matrix
R1,N!R2,N associated with the stack of the two layers pr
vides the following relationship:

FF2,N~2h!

F2,N~h!
G5R1,N!R2,NFF1,N~2h!

F1,N~h!
G . ~43!

The comparison of Eqs.~41!–~43! shows that the expressio
for the matrixR1,N!R2,N can be deduced from Eqs.~41! and
~42! by eliminating the vectorsF2,N(0) andF1,N(0). Thus,
the matricesR1,N andR2,N are expressed in block forms

Rj ,N5FRj ,11,N Rj ,12,N
Rj ,21,N Rj ,22,N

G , j 51,2. ~44!

Then, after the elimination of the vectorsF2,N(0) and
F1,N(0) in Eqs.~41! and ~42!, we obtain
R1,N!R2,N5FR2,11,N2R2,12,N~R2,22,N2R1,11,N!21R2,21,N R2,12,N~R2,22,N2R1,11,N!21R1,12,N
2R1,21,N~R2,22,N2R1,11,N!21R2,21,N R1,22,N2R1,21,N~R2,22,N2R1,11,N!21R1,12,N

G . ~45!
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Note that the group law! associated with thisR-matrix al-
gorithm is exactly the same as the one defined in Ref.@39#.
This continuation algorithm will not lead to numerical inst
bilities since it is derived from the continuation procedu
defined in Sec. III B 2. In the general case of an superla
made ofm layers, one just has to combinem R matrices
using the law! @39#.

Finally, we show how to use the translationT ~30! in
order to obtain theR matrix associated with the superlay
that generates the woodpile crystal considered in S
III B 4. The translationT can be considered as the bas
change from$enunPN% to $T21enunPN% since, from the
unitarity T215T* , ^en ,Tc&H5^T21en ,c&H , wherec is in
H andn is an integer. Hence, the finalR matrix is

RN5F1N 0

0 TN
GR1,N!R2,NF1N 0

0 TN
21G , ~46!

where 1N andTN are, respectively, the matrices with coef
cients^em ,en&H and ^em ,Ten&H , m,n51,2, . . . ,2N. From
Eq. ~43!, this matrix gives the relationship

FF2,N~2h!

TF2,N~h!
G5RNFF1,N~2h!

TF1,N~h!
G . ~47!

IV. VERIFICATION OF THE NUMERICAL METHOD

In this section, we check the numerical method we ha
presented. For this aim, we realize a convergence test
er

c.

e
e

check energy conservation and we compare the theore
calculations to the experimental measurements. These t
checks focus on the reflection properties of an experim
tally realized woodpile structure@12# designed to present
band gap around the wavelength equal to 1.5mm.

The considered woodpile structure consists of a stack
five identical layers made of rectangular silicon rods~Fig. 4!.
The silicon rods have a height equal toh5200 nm and width
equal tow5180 nm and their axis to axis spacing isd1,1
5d2,25650 nm. The layers are stacked such that two fi
neighbors are perpendicular and two second neighbors
displaced relative to each other byd3,15d1,1/25325 nm and
d3,25d2,2/25325 nm. The media above and below th
structure are, respectively, air and silicon. Finally, there i

FIG. 4. Representation in the incidence plane of the conside
woodpile structure: the parameters of the structure are given in
text; the incident electromagnetic fieldEi ,H i is p polarized.
1-8



o
a

a
o

he

d
et

r

to
ro

e

o
er

a
t
u
n
r.

ne
his
the
ap
n

and

en
.

(
-
so-

ci-

on
l

at
e
rva-

der
ne
on-

ts

is
a
y.
tion
t of

e

h

-

cy
n
en
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thin silicon nitride layer with height equal toh8570 nm~op-
tical index chosen equal to 2.0@49#! between the structure
and the silicon substrate. The optical index of silicon is ch
sen to be equal to 3.45~corresponding to the value at
wavelength of 1.5mm @49#!.

The woodpile structure is illuminated from the air by
plane wave: its wave vector is perpendicular to the axis
the rods of the first layer and its direction differs from t
vertical axis by the angleu equal to 20°~Fig. 4!. The inci-
dent plane wave isp polarized, i.e., the incident electric fiel
Ei is inside the incidence plane and the incident magn
field H i is perpendicular to this plane.

A. Convergence test

Figure 5 shows the reflectivity as a function of the no
malized frequencyvd1,1/(2pc) for different values of the
integer N. We varied the normalized frequency from 0
0.65. This range corresponds to wavelengths ranging f
1 mm to ` if the spatial periodd1,1 is equal to 0.65mm as
for the experimental realization@12#. Note that it includes the
important wavelengths around 1.5mm @corresponding to
vd1,1/(2pc)50.65/1.5;0.43], where reflectivity is close to
100% for the considered incident plane wave. The giv
reflectivity curves are obtained with the three values 939,
535, and 333 of the integerN.

If the integerN is equal to 939 ~solid line on Fig. 5!, the
obtained curve has completely converged since it is imp
sible to distinguish it from a curve obtained with a high
value ofN. If N is equal to 535 ~dashed line in Fig. 5!, the
obtained curve is very close to the converged one for
considered frequencies. This second number is sufficien
obtain appreciable precision while, for the considered str
ture, the CPU time for a one point computation is less tha
s on a PC equipped with a 1 GHz Pentium III processo

FIG. 5. Reflectivity as a function of the normalized frequen
vd1,1/(2pc) with d1,150.65mm showing the convergence whe
the integerN is increasing; the considered structure and incid
electromagnetic field are represented in Fig. 4.
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Finally, if N is equal to 333 ~dotted line in Fig. 5!, the
obtained curve differs significantly from the converged o
only for the normalized frequencies up to the band gap. T
last number is sufficient to obtain an estimate around
band gap~especially to obtain an estimate of the band g
edges!, while the CPU time for a one point computatio
becomes less than 0.2 s.

This convergence test confirms the one done for the b
gap edge and reported in Ref.@36# @Table 1#: for both reflec-
tivity and dispersion relation, the value 535 for the integer
N is in practice sufficient. The associated CPU time is th
close to the one needed for the two-dimensional crystals

B. Test of energy conservation

Since there is no absorption in the considered structure«
andm are real-valued functions!, we can check energy con
servation by comparing the flux of the Poynting vector as
ciated with the incident plane wave~normalized to unity! and
the sum of the calculated flux of the Poynting vector asso
ated with the reflected and transmitted fields~reflectivity and
transmittance!. The difference gives the energy conservati
error due to the matrix truncation~indeed, this error is equa
to zero if the matrices are not truncated!.

This test is possible if the matrix truncation is such th
energy conservation@37# is not automatically satisfied. In th
numerical method we have presented, the energy conse
tion can be broken due to the basis change~40!. The expres-
sions for the matricesPN and QN given in Sec. III C 1 are
such that the energy conservation is actually broken. In or
to save matrix inversion and then computation time, o
could be tempted to use the fact that the adjoint of the n
truncated matrix with coefficientŝem ,fn&H is exactly the
inverse of the nontruncated matrix with coefficien
^fm ,en&H1

; the adjoint of the matrixPN is related to the

inverse of the matrixQN . We do not recommend to use th
property for reflectivity computations since it will provide
R matrix which implies the energy conservation rigorousl

The link between energy conservation and the trunca
procedure can be stated clearly. The vertical componen
the Poynting vector is the real part of@E1H̄22E2H̄1#/2 and,
with notation~12!, its flux through the plane defined by th
equationx356h can be written as

Re@^F2~6h!,JF1~6h!&H#/2, J5F0 21

1 0 G .
Then, from Eq.~47!, the flux of the Poynting vector throug
the planes with equationsx356h are rigorously equal if and
only if the matrixRN is related to its adjointRN* by

RN* 52FJN 0

0 2JN
GRNFJN 0

0 2JN
G , ~48!

where JN is the matrix with coefficientŝem ,Jen&H , m,n
51,2, . . . ,2N. Relation~48!, which is equivalent to the en
ergy conservation together with the reciprocity theorem@37#,
is satisfied if one uses the adjoint of matrixPN to express the

t

1-9
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matrix QN
21 in Eq. ~40!. The truncation procedure and i

consequences on the reciprocity theorem is also discuss
Refs.@26,50#.

Figure 6 shows the energy conservation error as a fu
tion of the normalized frequencyvd1,1/(2pc) for the three
values 939, 535, and 333 of the integerN corresponding
to Fig. 5. This test on energy conservation confirms the p
ceding test of convergence. IfN is equal to 939 ~solid line!,
the error is always smaller than 0.5%. IfN is equal to 5
35 ~dashed line!, the error is rarely above 1% and alwa
under 5%; this precision is acceptable in practice. Finally
N is equal to 333 ~dotted line!, the error is less than 1.5%
and acceptable for the normalized frequencies around
band gap.

C. Experimental verification

In this section, we compare our numerical results w
measured reflectivity data. This comparison completes
study presented in Ref.@27#. There we showed that it is
necessary to take into account the following structural p
turbation: in each layer, every two rods are slightly shift
~Fig. 7!. So, in this section, the considered structure has h
zontal spatial periodsd1,15d2,251300 nm. From the image
presented in Ref.@27#, we have chosen a shiftd of 50 nm
and then, in each layer, the axis to axis spacing of two c
secutive rods is alternativelyd1,18 5700 nm and d1,19
5600 nm ~Fig. 7!. This slight shift is the only difference
between the structure considered in this section and
structure considered previously and represented in Fig
From now, we denote by ‘‘ideal’’ the woodpile without struc
tural perturbation represented in Fig. 4.

In Ref. @27#, the comparisons between calculated a
measured reflectivity with different anglesu, structure orien-
tations and polarizations are presented. In this paper, we
cus on the single case represented in Figs. 4 and 7 with

FIG. 6. Error on energy conservation as a function of the n
malized frequency corresponding to Fig. 5; the considered struc
and incident electromagnetic field are represented in Fig. 4.
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angle u equal to 20°. However, in order to complete th
study presented in Ref.@27#, we take into account the wave
length dependence of the silicon~the values of the optica
index for the silicon are taken from Ref.@49#!.

Note that, contrary to the ideal woodpile of previous se
tions, the woodpile with the structural perturbation~Fig. 7! is
not invariant under reflections with respect to vertical plan
containing the incident electric fieldEi and magnetic field
H i . Consequently, the electric field~and then the reflected
electric field! is not contained in the incoming plane and, t
magnetic field~and then reflected magnetic field! is not per-
pendicular to the incoming plane. Moreover, since the spa
period of the woodpile with the structural perturbation
quite large, there are several reflected orders. Since the
perimental measurements provide the reflectivity associa
with the p-polarized field component in the specular ord
we have to consider only this component of the reflec
field.

Figure 8 shows the experimental measurements~repre-
sented by the open circles! of the reflectivity associated with
the p-polarized field component in the specular order. T
details about these experimental measurements are pres
in Ref. @27#. Figure 8 shows also the calculated reflectiv
~represented by the solid line! on the woodpile with the
structural perturbation of Fig. 7. The integerN was chosen
equal to 10311 for this calculation leading to an error les
than 5% for the wavelengths ranging from 1mm to 1.2mm
and less than 2% for the other wavelengths~note that we
have neglected the imaginary part of the optical index of
silicon for this test on energy conservation!. Moreover, we
have realized a convergence test showing that the calc
tions of Fig. 8 have converged.

The comparison of the experimental measurements
calculations shows an excellent agreement for the wa
lengths ranging from 1.25mm to 1.7mm. In particular, the
position and the width of the dip around 1.42mm are very
well reproduced by the calculations, the difference of de
being certainly the result of the averaging of the experim
tal setup.

The comparison for the wavelengths ranging from 1mm
to 1.25mm shows a significant difference. That is why w
have also represented by a dashed line on Fig. 8 the ca

-
re

FIG. 7. Representation in the incidence plane of the conside
woodpile structure for the experimental validation; the single d
ference between this structure and the ideal one represented in
4 is that, in each layer, every second rods is shifted withd
550 nm.
1-10
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THEORETICAL STUDY OF PHOTONIC BAND GAPS IN . . . PHYSICAL REVIEW E67, 066601 ~2003!
lated reflectivity on the ideal woodpile and taking into a
count the wavelength dependence of the silicon. The dif
ences between the two calculated curves only come from
slight shift. The comparison of the two calculated curv
shows that a small structural perturbation can lead to a n
negligible difference for the wavelengths ranging fro
1 mm to 1.25mm. So, we conclude that the significant d
ference between the experimental measurements and c
lations is likely to be the result of many slight structur
perturbations in the experimental realization, which have
been taken into account in the calculations.

Finally, as mentioned in Ref.@27#, the difference between
the two calculated curves for the wavelengths ranging fr
1.25mm to 1.7mm is the result of the ‘‘superstructure:’’ th
horizontal spatial periods of the woodpile with the structu
perturbation are twice as large as that of the ideal struct
Figure 9 shows the representation of the dispersion rela
in the ideal structure~the details about this representation a
presented in Ref.@36#!. Note that, in this paper, the fre
quency dependence of the optical index of silicon is tak
into account for the dispersion relation. The imaginary p
of the optical index is neglected for this dispersion relat
~although it is not for the reflectivity curves in Fig. 8!, but
this does not make problem since this imaginary part is
ways smaller than 0.006. From Fig. 9, a photonic band
exists for normalized frequencies ranging fro
v2d1,1/(2pc)'0.356 tov1d1,1/(2pc)'0.434. The wave-
lengths corresponding to these lower (v2) and upper (v1)
band gap edges are, respectively, 1.83mm and 1.50mm.

FIG. 8. Reflectivity associated with thep-polarized field com-
ponent in the specular order as a function of the wavelength~the
length unity is the micrometer!: the open circles (s) correspond to
the experimental measurements; the solid line corresponds to
calculated reflectivity on the woodpile with the structural perturb
tion ~Fig. 7!; the dashed line corresponds to the calculated refl
tivity on the ideal woodpile~Fig. 4!. The solid vertical line at
1.48mm corresponds to the calculated band gap edge in the w
pile with the structural perturbation; the dashed vertical line
1.34mm corresponds to the calculated band gap edge in the i
woodpile.
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The dashed line starting fromG is defined by the equation
@vd1,1/(2pc)#sinu5k1, whereu is equal to 20° and it then
corresponds to the reflectivity curves of Fig. 8. So, from F
9, the upper band gap edge for this external angleu is at
vd1,1/(2pc)'0.484 corresponding to the waveleng
1.34mm. We have represented this upper band gap edg
Fig. 8 by the vertical dashed line. One may remark that
dip is then included inside the band gap of the ideal str
ture. Now, let us consider the woodpile with the structu
perturbation. Since the horizontal spatial periods are twice
large as that of the ideal structure, the dispersion relation
this structure can be roughly obtained by folding the disp
sion relation in the ideal structure as it is shown in Ref.@27#.
So, the solid line starting fromX in Fig. 9 provides an esti-
mate of the upper band gap edge in the woodpile with
structural perturbation atvd1,1/(2pc)'0.443 correspond-
ing to a wavelength of 1.47mm. A rigorous calculation that
takes into account the structural perturbation gives this up
band gap edge at 1.48mm. We have represented this upp
band gap edge in Fig. 8 by the vertical solid line. Then
presence of the dip around 1.42mm is not surprising since
this wavelength is not inside the band gap of the woodp
with the structural perturbation. Finally, for wavelengt
ranging from 1.25mm to 1.7mm, we can conclude that th
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-
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FIG. 9. Representation of the dispersion relation in the id
woodpile structure represented in Fig. 4: in abscissa, the tange
component (k1 ,k2) of the Bloch wave vector on the characterist
pathGXMG, whereG, X, andM have, respectively, the coordinate
(0,0), (0,0.5), and (0.5,0.5); in ordinate, the normalized freque
with d1,150.65mm; the frequency dependence of the optical ind
of silicon is taken into account~the imaginary part of this optica
index is neglected!. The horizontal dotted lines correspond to th
band gap edges: the frequencyv1 corresponding to the upper ban
gap edge is atvd1,1/(2pc)'0.434 and the frequencyv2 corre-
sponding to the lower band gap edge is atvd1,1/(2pc)'0.356.
The dashed line starting fromG corresponds to the curves in Figs.
and 8 when the angleu is equal to 20°: it defines the upper ban
gap edge~horizontal dashed line! for u520° at vd1,1/(2pc)
'0.484; the horizontal solid line is atvd1,1/(2pc)'0.443.
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presence of the dip is certainly the result of the the effec
the ‘‘superstructure.’’ Moreover, since the agreement
tween the calculations and the measurement is very good
can also conclude that the periodic arrangement domin
over the other structural perturbations in this wavelen
range.

V. PHOTONIC BAND GAPS IN WOODPILE STRUCTURES

In this section, we investigate the existence of photo
band gaps in woodpile structures. We consider a sim
woodpile structure similar to the ones experimentally re
ized @12,13#. It is generated by the superlayer considered
Sec. III B 4 and represented in Fig. 3. The spatial periodsd1 ,
d2, and d3 are chosen such that they generate a fa
centered-cubic lattice in order to support the presence
photonic band gaps@3#. Let a be the edge length of th
associated cube:d1,15d2,25a/A2, d3,35a/2, and d3,1

5d3,25a/(2A2). Since the considered superlayer is made
two layers that are identical after a rotation of 90° of one
them ~Fig. 3!, the height of these layers ish5d3,3/25a/4.
Finally, each layer is made of two dielectric rods per unit c
as represented in Fig. 10. The relevant parameters are
the index contrast

h5A«s /«b, ~49!

and the filling ratio

f 5w/d1,15A2w/a. ~50!

The quantity that we investigate is the relative band g
width

g52
v12v2

v11v2
, ~51!

wherev1 andv2 are, respectively, the upper and the low
band gap edges as defined in Fig. 9. Note that, due to d
nition ~51!, g can be negative and the presence of a band
is equivalent tog.0.

The relative band gap widthg depends on both inde
contrasth and filling ratio f. While it is well known that a
high index contrast is more favorable to open a band gap
influence of the filling ratio is not obvious. Indeed, contra
to the case of face-centered-cubic lattices of spheres@15#, the
band gap widthg is not a monotone function of the filling
ratio f @there is no band gap whenf has its minimal (0) or
maximal (1) values#.

FIG. 10. Representation of the considered layer; the horizo
spatial periods ared1,15d2,25a/A2 and the height ish5a/4. The
first dielectric rod of the unit cell of this layer has widthw and
dielectric constant«s and the second has dielectric constant«b .
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So, in this section, we first determine the optimal fillin
ratio. Then, we determine minimal index contrast leading
a photonic band gap. Finally, we study the influence of str
tural perturbation similar to the one observed in the exp
mental realization.

A. Determination of the optimal filling ratio

Since the permittivity is a single variable function in ea
layer, we assume that the filling ratio

f 05~11h!21, ~52!

associated with the Bragg condition in one-dimensional s
tems, should play a vital role. This physical assumption
also supported by the fact that, in the mathematical formu
tion of Sec. III B, the operatorsL1 ~14! and L2 ~26! play a
determinant role.

Figure 11 shows the relative band gap width~51! as a
function of the filling ratio~50! for the three values 3.45
2.85, and 2.25 of the index contrast~49!. Note that conver-
gence tests have been realized in order to ensure the acc
of the results and to obtain an convenient precision as
ported in Ref.@36#. The value 3.45 of the index contra
corresponds to the woodpile structure, we have studied in
preceding section: with the optimal value of the filling rat
at 0.2960.02, the relative band gap width is equal
17.9%60.1%. Note that this result confirms the previo
one presented in Ref.@19# so that, the filling ratio of the
experimental realization@12,13# is certainly optimal. The
value 2.25 of the index contrast can correspond to ordin
transparent materials in the optical range such as air
Ta2O5 @51#: with the optimal value of the filling ratio a
0.3860.02, the relative band gap width is equal to 3.5
60.1%.

For both values 3.45 and 2.25 of the index contrast,
filling ratio f 51.3f 0 is very close to the optimal value. Thi
is also confirmed for the values 2.85~Fig. 11!, 2.33, and 3.6

al

FIG. 11. Relative band gap widthg as a function of the normal-
ized filling ratio f / f 0 for different values of the index contrasth:
the solid circles correspond toh53.45, the solid squares corre
spond toh52.85, and the open circles correspond toh52.25.
1-12
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@19#. Then, from these numerical studies, we conclude t
the optimal value of the filling ratio is certainly aroundf
51.3f 0 for the woodpile structure considered in this sectio

B. Minimal index contrast needed for a photonic band gap

With this knowledge, we can vary the index contrast
search for the lowest possible value that opens a band
Figure 12 shows the relative band gap width as a function
the index contrast: with the filling ratio equal to 1.3f 0 ~solid
circles!, a band gap opens from an index contrasth52.05
60.01; with the filling ratio equal tof 0 ~open circles!, a
band gap opens from an index contrast equal toh52.08
60.01. Note that the relative band gap width atf 51.3f 0 is
always larger than the one atf 5 f 0. This confirms the con-
clusion of the Sec. V A, so that the minimal index contra
leading to a photonic band gap is certainly aroundh52.05
60.01 associated with a filling ratiof 50.4360.01.

C. Woodpiles with contrast 2.25

In this section, we study the possibility for the realizati
of a photonic woodpile crystal with a photonic band gap
the optical and infrared ranges. We consider an index c
trasth52.25 corresponding to that of air and tantalum pe
toxide (Ta2O5) in these ranges. Note that this transpar
dielectric material is used to realize planar multidielect
structures at optical scale and to implant erbium ions@51#.
From the study of Sec. V A, the relative band gap width
equal to 3.5%60.1% at the optimal value of the filling ratio
at 0.3860.02. However, this band gap exists in the ide
structure. So, we have to study the influence of the struct
perturbations which appear in the experimental realizatio

The influence of many structural perturbations on
band gap in woodpile structures have been studied in R
@20#. However, this study does not contain the structural p
turbation due to the fabrication techniques of the silic

FIG. 12. Relative band gap widthg as a function of the the
index contrasth: the solid circles correspond to the filling ratiof
51.3f 0 and the open circles correspond to the filling ratiof 5 f 0.
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woodpile crystal@12# considered in Sec. IV C and Ref.@27#.
So, in order to complete the study presented in Ref.@20#, we
give in this section the influence of the shiftd for every two
rods in the woodpile structure~Fig. 7!.

Figure 13 shows the relative band gap width as a funct
of the shiftd. Note that the coefficienta/A2 for the normal-
ization of the shift is equal tod1,15d2,2 in the ideal structure
and tod1,1/25d2,2/2 in the structure with the structural pe
turbation. From Fig. 13, the band gap opens for a shifd
ranging from 0.0 until 0.18a/A2. In particular, for a shift
equal to 0.10a/A2, the relative band gap width is equal
2.2%60.1%.

Figure 14 shows a representation of the dispersion r
tion in the ideal woodpile structure~left! and in the structure

FIG. 13. Relative band gap widthg as a function of the the
normalized shiftdA2/a.

FIG. 14. Representation of the dispersion relation in the id
woodpile structure~left! and in the structure with the structura
perturbation atdA2/a50.1 ~right!: the index contrasth is equal to
2.25; the filling ratiof is equal to 0.38. The coordinates ofG, X and
M are reported in Fig. 9; in the same coordinates system assoc
with the dual lattice of the ideal structure, the coordinates ofX8 and
M 8 are, respectively, (0,0.25) and (0.25,0.25).
1-13
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GRALAK et al. PHYSICAL REVIEW E 67, 066601 ~2003!
with the structural perturbation atdA2/a50.1 ~right!. These
representations are similar to the one of Fig. 9. This fig
shows that a band gap exists in both considered structu
the band gap edges in the ideal structure are
v1a/(2A2pc)50.46060.001 andv2a/(2A2pc)50.445
60.001; the band gap edges in the structure with the st
tural perturbation (dA2/a50.1) are at v1a/(2A2pc)
50.45760.001 andv2a/(2A2pc)50.44760.001.

VI. CONCLUSION

We presented an extension of the numerical method
exact eigenvalues and eigenfunctions to solve Maxwe
equations in the presence of woodpile structures. The sig
cant point of this method is the decoupling of the elect
magnetic field in each layer: Maxwell’s equations are
duced to simple scalar equations and it is then possibl
expand the electromagnetic field into the basis of ‘‘ex
eigenfunctions’’ associated with the ‘‘exact eigenvalues’’ a
it is possible to determine exactly these eigenfunctions
eigenvalues. Moreover, we think that this derivation con
tutes a suitable starting point for further analytical estima
of several quantities.

We also presented three checks on our numerical met
We performed a convergence test and checked the recip
ity theorem. These two verifications showed that our num
cal method is very efficient. In particular, it requiresN53
33 basis functions for an error around 1% for frequenc
corresponding to the first band, while 737 plane waves are
required for the already existing efficient method@22#. This
efficiency provides a very important reduction of calculati
time and permits us to consider more complicated structu
We benefited from this higher efficiency in an experimen
comparison with the silicon woodpile crystal designed fo
wavelength of 1.5mm @12#. We showed that if the structura
perturbation observed on the scanning electron microsc
image @27# is included in the calculation, excellent agre
ment with experiments is obtained for wavelengths arou
the band gap.

Finally, we have studied the possibility to realize a woo
pile crystal that has a photonic band gap in the optical ran
First, we have shown that the optimal filling ratio is certain
aroundf 51.3f 0, wheref 0 is the filling ratio~52! associated
with the Bragg condition in one-dimensional systems. Ne
we have shown that a photonic band gap opens from
index contrast of 2.0560.1. Finally, we have considere
more precisely an index contrast of 2.25 corresponding
that of air and Ta2O5: the ideal woodpile structure presents
band gap with a 3.5% relative band gap width; the woodp
with a structural perturbation similar to the experimental
alization@12# presents a band gap with a 2.2% relative ba
gap width.

Moreover, as in the case of the face-centered-cubic
tices of microspheres@16#, we think it should be interesting
to study woodpile structures made from materials with sm
absorption. The interest of such materials is that some
them provide a high index contrast. Concerning woodp
structures, the most promising material is certainly silic
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because of the developed fabrication techniques@12# and the
small absorption~around 1% in the optical range! that takes
place. In order to characterize the properties of such abs
tive structures, it is necessary to determine the complex re
nances associated with the Helmholtz operator@17# and the
generalization of the local density of states@18#. The numeri-
cal method we have developed can provide these quant
and we will present their calculation in a forthcoming pap
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APPENDIX A: DETERMINATION OF THE EXACT
EIGENVALUES AND EIGENFUNCTIONS

We show here how to determine exactly the eigenval
and the eigenfunctions of the operatorL1 associated with the
first layer in a very general case. An analogous reason
provides the ones of the operator associated with the ot
layers, in particularL2.

From expression~14!, every eigenvalueln of the operator
L1 is either an eigenvalue ofL«1

or Lm1
. So, it is sufficient to

determine the set of eigenvalues$ln1 ,pupPN% associated

with the set of eigenfunctions$fn1 ,pupPN% of the scalar

operatorLn1
.

1. The equation satisfied by the exact eigenvalues

From expression~15!, the operatorLn1
is the sum of the

two operatorsv2«1m11]1n1
21]1n1 and ]2

2; the first one is
an operator of the single variablex1 and the second is an
operator of the single variablex2. Thus, we can perform a
variable separation; every eigenfunction ofLn1

can be writ-
ten as

fn1 ,p~x1 ,x2!5fp1

(1)~x1!fp2

(2)~x2!, p1 ,p2PN, ~A1!

wherefp1

(1) andfp2

(2) are, respectively, eigenfunctions of th

first and second operators that constituteLn1
.

It is easy to verify that the plane wave

fp2

(2)~x2!5exp$2ip@k21q~p2!#x2 /d2,2%, q~p2!PZ
~A2!

is an eigenfunction of the operator]2
2 and satisfies the partia

Bloch boundary condition~8! reduced to the variablex2. Let
lp2

(2) be the associated eigenvalue. Then, from Eq.~A2!,
1-14
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lp2

(2)52$2p@k21q~p2!#/d2,2%
2. ~A3!

Note that, as it is mentioned and used in Sec. III C 1,
eigenfunctionfn1 ,p ~A1! with thex2 dependency~A2! is an

eigenfunction of the operators]2 and ]2
2: each eigenvalue

ik2,n that appears in relation~34! corresponds to an eigen
value 2ip@k21q(p2)#/d2,2.

The x1 dependency of the eigenfunction~A1! is deter-
mined using the usual transfer matrix@52–54#. Let lp1

(1) be

the eigenvalue associated withfp1

(1) :

@v2«1m11]1n1
21]1n1#fp1

(1)5lp1

(1)fp1

(1) . ~A4!

In order to obtain a set of first-order differential equation
we introduce the column vector

Fp1
5F n1fp1

(1)

n1
21]1n1fp1

(1)G . ~A5!

Note that, from Eq.~A4!, the two components of this vecto
are continuous functions. Now, suppose that the unit cel
the first layer we consider is made ofJ rods of widthw1,j ,
permittivity «1,j , and permeabilitym1,j , j 51,2, . . . ,J ~Fig.
15!: we denote byn1,j the value of the functionn1 in the rod
j, j 51,2, . . . ,J. Then, from Eq.~A4!, the vector~A5! satis-
fies @54#

Fp1
~d1,1!5T1~lp1

(1)!Fp1
~0!, ~A6!

where

T1~l!5T1,J~l!T1,J21~l!•••T1,1~l!, ~A7a!

T1,j~l!5P1,j~l,w1,j !, ~A7b!

P1,j~l,w!5Fcos~b1,jw! n1,jb1,j
21sin~b1,jw!

2n1,j
21b1,jsin~b1,jw! cos~b1,jw!

G ,

~A7c!

b1,j5Av2«1,jm1,j2l, j 51,2, . . . ,J. ~A7d!

Note that the four elements of each matrixT1,j only depend
on b1,j

2 ; expression~A7c! is independent of the definition o

FIG. 15. A layer made of three rods per unit cell (J53): the
three rods have widthw1,j , permittivity «1,j , and permeability
m1,j , j 51,2,3.
06660
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the square root~A7d!. In addition to~A6!, vector~A5! has to
satisfy the partial Bloch boundary condition~8! reduced to
the variablex1

Fp1
~d1,1!5exp~2ipk1!Fp1

~0!. ~A8!

The combination of~A6! and~A8! implies that exp(2ipk1) is
an eigenvalue of the matrixT1(lp1

(1)); the equation

det@T1~lp1

(1)!2exp~2ipk1!#50 ~A9!

determines the eigenvalueslp1

(1) . This last equation can be

simplified using the fact that detT151 @since, from Eq.
~A7b!, detT1,j51, j 51,2, . . . ,J]; if exp(2ipk1) is an eigen-
value of T1, then exp(22ipk1) is also. Thus, Eq.~A9! is
equivalent to

tr T1~lp1

(1)!22 cos~2pk1!50, ~A10!

where trT1 is the trace of matrixT1. Once the eigenvalue
lp1

(1) are determined from Eq.~A10!, the associated eigenvec

tors fp1

(1) are also obtained using the transfer matrix@53#:

first, the eigenvectorFp1
(0) in C2 @associated with the eigen

value exp(2ipk1)] of the matrixT1(lp1

(1)) is determined; sec-

ond, the expression offp1

(1) in the rodj can be deduced from

Fp1
~x1!5P1,j~lp1

(1) ,x12x1,j !Fp1
~x1,j 21!, ~A11!

where

x1,050, x1,j5 (
q51

j

w1,q , j 51,2, . . . ,J. ~A12!

Finally, the eigenvalues of the operatorLn1
are

ln1 ,p5lp1

(1)1lp2

(2) , ~A13!

whose two parts are, respectively, given by Eqs.~A10! and
~A3!, and the expression of associated eigenvectors is
~A1!, whose two parts are, respectively, given by Eqs.~A11!
and ~A2!. Concerning the functionscn ~32! used in Sec.
III C 1, they are equal to the functions

cn1 ,p~x1 ,x2!5~n1
21]1n1fp1

(1)!~x1!fp2

(2)~x2!, ~A14!

wherep1 andp2 are inN, the expression ofn1
21]1n1fp1

(1) in

the rodj can be deduced from Eq.~A11! and the expression
of fp2

(2) is given by Eq.~A2!.

2. Numerical determination of the real eigenvalues

Here, we suppose that the permittivity and permeabi
satisfy the hypothesis~2!; the operatorLn1

is self-adjoint and
its eigenvalues are then real. The only difficulty in the n
merical determination of the eigenvalues~A13! is to find the
real numberslp1

(1) which satisfy the transcendental E

~A10!.
1-15
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Since the numberslp1

(1) are eigenvalues of the operat

v2«1m11]1n1
21]1n1<v2«1m1 , these numbers are on th

semiaxis (2`,v2«1m1#. This property makes their nu
merical determination easier. However, two difficulties c
occur in this numerical determination. We give herein t
solutions we have adopted.

The first difficulty comes from the possibility for two con
secutive numberslp1

(1) to be very close to each other. Ou

solution is to use an algorithm that determines the zero
the function trT1(l)22 cos(2pk1) on the left side of Eq.
~A10! by taking into account this function together with i
derivative with respect tol. If two numberslp1

(1) are very

close to each other, then the derivative is close to zero. T
such algorithm needs to determine the function
u-

rt.
s

m

,
Th

n

d
re
u

ia
v
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dl
@ tr T1~l!22 cos~2pk1!#5tr

dT1

dl
~l!. ~A15!

The expression of the derivative of the matrixT1 can be
deduced from Eq.~A7!:

dT1

dl
5

dT1,J
dl

T1,J21•••T1,11T1,J
dT1,J21

dl
•••T1,11•••

1T1,J T1,J21•••
dT1,1

dl
, ~A16!

where, for j 51,2, . . . ,J,
dT1,j

dl
5

1

2 Fw1,jb1,j
21sin~b1,jw1,j ! n1,jb1,j

23sin~b1,jw1,j !2n1,jw1,jb1,j
22cos~b1,jw1,j !

n1,j
21b1,j

21sin~b1,jw1,j !1n1,j
21w1,jcos~b1,jw1,j ! w1,jb1,j

21sin~b1,jw1,j !
G . ~A17!
l-

h

A2.
e

nu-

to
-

The second difficulty comes from the possibility of n
merical instabilities in expressions~A7c! and~A17! since the
numbersb1,j ~A7d! can have nonvanishing imaginary pa
Our solution is to multiply the four coefficients of matrice
T1,j and their derivative~A17! by the number

Nj5exp@2uIm~b1,j !uw1,j #, j 51,2, . . . ,J, ~A18!

and the term 2 cos(2pk1) that appears in Eq.~A10! by the
product

N5NJ NJ21•••N1 . ~A19!

3. Numerical determination of the complex eigenvalues

Here, the permittivity and permeability can take any co
plex value; n1,j is in C, where n15«1 ,m1 and j
51,2, . . . ,J. The operatorLn1

is not self-adjoint and then
its eigenvalues are, in general, in the complex plane.
determination of these complex eigenvalueslp1

(1) that satisfy

the Eq. ~A10! has been intensively studied using differe
methods@25,55,56#.

We present here a method similar to the one presente
Ref. @55#: the complex eigenvalues are deduced from the
eigenvalues by an analytic continuation. However, o
method differs from the one presented in Ref.@55# since we
make variation in the phase of the numbersn1,j instead of
their imaginary part. We think that it is better to make var
tion in the phase since, from that we have observed, it lea
invariant the generalization to the complex case

Re~ln1,1!>Re~ln1,2!•••>Re~ln1 ,p!••• ~A20!

of numbering~37!.
We define for allt in @0,1# the functions
-

e

t

in
al
r

-
es

ñ1,j~ t !5un1,j uexp@ i targ~n1,j !#, ~A21!

where arg(n1,j ) is the phase of the complex numbern1,j ,
n15«1 ,m1, andj 51,2, . . . ,J. Substituting the numbersn1,j

~where n15«1 ,m1) for ñ1,j (t) in Eq. ~A7!, we obtain the
matrix T̃1(l,t). For each value oft, we define the numbers
l̃p1

(1)(t) that satisfy

tr T̃1@ l̃p1

(1)~ t !,t#22 cos~2pk1!50. ~A22!

Then, the numbersl̃p1

(1)(1) are the desired complex eigenva

ueslp1

(1) and the numbersl̃p1

(1)(0) are real eigenvalues whic

can be determined using the method presented in Sec.
Assuming that l̃p1

(1)(t) are continuous and differentiabl

functions of t, the complex numbersl̃p1

(1)(1) can be esti-

mated from the numbersl̃p1

(1)(0) by a numerical integration

@55# of

dl̃p1

(1)

dt
~ t !52

tr~]T̃1 /]l!@l̃p1

(1)~ t !,t#

tr~]T̃1 /]t !@ l̃p1

(1)~ t !,t#
, ~A23!

where]T̃1 /]l is given by substituting the numbersn1,j for
ñ1,j (t) in Eqs. ~A16! and ~A17!, and]T̃1 /]t is determined
similarly. Finally, the obtained estimates of numbersl̃p1

(1)(1)

are used to initiate any of the classical methods for the
merical solution of equations@55#. Then, one obtains the
desired complex eigenvalues.

In order to eliminate the numerical instabilities, one has
multiply each matrixT1,j and their derivatives by the num
bersNj ~A18! as in Sec. A2.
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4. Numerical determination of the eigenfunctions

From Eq. ~A11!, the expression of each eigenfunctio
fp1

(1) is given by the coefficients of the column vecto

Fp1
(x1,j ), j 50,1, . . . ,J. On the numerical side, the onl

difficulty comes from the fact that numerical instabilities
the expression of the transfer matrices~A7b! and ~A7c!. A
solution based on theR-matrix algorithm ~or S-matrix!
should consist in using the algorithm presented in Ref.@36#
to obtain the vectorFp1

(x1,0) @and the vectorFp1
(x1,J)

5exp(2ipk1)Fp1
(x1,0)] and then, the algorithm presented

Ref. @31 Sec. V# to obtain the vectorsFp1
(x1,j ), j

51,2, . . . ,J21. However, we propose to use another so
tion that benefits from the fact that we deal with 232 ma-
trices.

We define the following complex coefficients:

FT 11
j T 12

j

T 21
j T 22

j G5T1,J ~lp1

(1)!T1,J21~lp1

(1)!•••T1,j~lp1

(1)!,

~A24a!

F t11
j t12

j

t21
j t22

j G5T1,j~lp1

(1)!T1,j 21~lp1

(1)!•••T1,1~lp1

(1)!,

~A24b!

FF 1
j

F 2
j G5Fp1

~x1,j !, j 50,1, . . . ,J. ~A24c!

SinceFp1
(x1,0) is an eigenvector of the matrixT1(lp1

(1)) as-

sociated with the eigenvalue exp(2ipk1), its coefficients sat-
isfy

F 2
052

T 11
J N2exp~2ipk1!N

T 12
J N F 1

0 , ~A25!

where the numbersT 11
J N and T 12

J N are obtained by multi-
plying each coefficient of matricesT1,j (lp1

(1)) by the number
v.

tt.

re

06660
-

Nj . The coefficientsF 1
J andF 2

J are deduced from Eqs.~A8!
and~A25! and then, one can obtain the other coefficients
j 51,2, . . . ,J21:

F 1
j 5

T 22
j 11t11

j N
T 21

j 11t11
j N1t21

j T 22
j 11N S F 2

JT 22
j 112

F 2
0

t11
j D ,

F 2
j 5

T 11
j 11t22

j N
T 11

j 11t12
j N1t22

j T 12
j 11N S F 1

J

T 11
j 11

2
F 1

0

t22
j D , ~A26!

where, as in Eq.~A25!, the multiplication by the numberN
consists in multiplying each coefficient of matricesT1,j (lp1

(1))

by the numberNj .
Finally, we have to normalize these functions in order

obtain relation~33!. From the definition of the inner produc
~17!, we have to compute

ifp1

(1)in1

2 5
1

d1,1
E

0

d1,1
ufp1

(1)~x1!u2n1~x1!dx1 , ~A27!

when the functions« andm have property~2!. In the general
case~where« andm are complex valued functions!, one has
to use the formalism presented in Ref.@26# @Sec. 2.3#. It is
possible to compute analytically expression~A27!:

ifp1

(1)in1

2 5
1

2d1,1
(
j 51

J
w1,j

n1,j
~ uF 1

j 21u21b1,j
22n1,j

22uF 2
j 21u2!

2b1,j
22Re~ iF 1

j 21F 2
j 212 iF 1

j F 2
j !. ~A28!

This expression allows to eliminate the numerical instab
ties that can occur from the exponential functions. Note t
all the coefficients of matrices defined in Sec. III C@Eqs.
~39!, ~40!, and ~46!# can be also computed analytically i
order to eliminate the numerical instabilities.
-
J.
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