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Theoretical study of photonic band gaps in woodpile crystals
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We investigate numerically the existence of photonic band gaps in woodpile crystals. We present a numerical
method specifically developed to solve Maxwell’s equations in such photonic structures. It is based upon a
rigorous mathematical formulation and leads to a considerable improvement of the convergence speed as
compared to other existing numerical methods. We tested our method by comparing the calculated reflectivity
with measurements on an actual sample, i.e., a silicon woodpile photonic crystal designed/fon du&ve-
length. Excellent agreement is obtained, provided the main structural imperfections of the sample are taken into
account. We show that the existence of photonic band gaps in woodpile crystals requires an index contrast
higher than 2.050.01. The effects of imperfections of such structures with an index contrast equal to 2.25 are
also investigated. Thus, the relative band gap width falls from 3.5% to 2.2% with structurals imperfection
similar to those of the sample.
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[. INTRODUCTION ent dielectric materials are prohibited in the optical range.
This is why microspheres made of metals or semiconductors

The main motivation for studying photonic crystals is have been considered. A numerical study showed the exis-
their possible ability to inhibit spontaneous photon emissiortence of a wide photonic band gap for the optical range if
[1,2]. This is a consequence of the existence of photoni@bsorption is neglectefll6]. However, a quantitative esti-
band gap$3.4], i.e., frequency intervals, where the propaga-mate of the effects of absorption remains necessary since
tion of the electromagnetic field is forbidden, whatever thespontaneous emission cannot be strictly inhibited in the pres-
polarization and the propagation direction. Indeed, it is ex-ence of absorptiofil7]. On the other hand, the concept of
pected that an excited atom, embedded in a photonic crystdbcal density of states can be generalized to absorptive ma-
cannot radiate if the atomic transition frequency falls in aterials[18], it determines whether or not absorption is negli-
photonic band gap since the electromagnetic energy canngible.
propagate awaj2]. In addition to these physical arguments, We consider in this paper, the second type of promising
rigorous theoretical studief5,6] showed that the single- structures, woodpile crystals. The latter have been studied
photon decay rate is proportional to the local density ofintensively by numerical methods, using an expansion of the
states. Since this local density of states vanishes in a photelectromagnetic field and the permittivity into the Foufier
nic band gap, these theoretical studies confirm the possibilitplane-wavegbasis. This expansion was used to predict pho-
for inhibiting spontaneous emission. tonic band gap edg€dl9], the effect of several structural

The existence of a photonic band gap is the result of amperfections on such edg€®0], the decay rate for single-
periodic modulation, together with sufficient contrast of thephoton emission in infinite structurd®1] and reflectivity
permittivity (we refer to its square root as the indekrom  and the inhibition of spontaneous emission for finite-
the experimental side, the main difficulty is to realize three-thickness structurei?2]. However, the use of a plane-wave
dimensional periodic structures having a reasonable accuragxpansion leads to poor convergence, due to the discontinu-
in the periodicity, combined with a sufficiently high permit- ous nature of both the electromagnetic field and the permit-
tivity contrast in the optical or infrared regime. At present it tivity [23]. For this reason, we have developed a numerical
is thought that the most promising current experimental remethod well adapted to woodpile structures. Here, the elec-
alizations are face-centered-cubic lattices of microspheres réromagnetic field is expanded using an “exact eigenfunctions
alized using colloid techniquég,8] as inversed opal®,10], basis” for which an exact representation of the permittivity is
and woodpile structurgl1-13. available[24-24.

Using a suitably adapted Korringa-Kohn-Rostocker Since this paper covers a broad fiéidom a mathematical
method[14], it has been shown that an index contrast highefformulation to an experimental comparigpmwe present in
than 2.85[15] is required to create a photonic band gap inSec. Il a summary of the most important ideas and results.
face-centered-cubic lattices of microspheres. Thus, transpaNext, in Sec. lll, we give a self-consistent presentation of the

numerical method we have developed. In particular, we dis-
cuss the underlying mathematical formalism. Then, in Sec.

*Electronic address: gralak@amolf.nl IV, we verify our method by performing a convergence test
"Electronic address: mdedood@physics.ucsb.edu and by checking energy conservation. In addition, we com-
*Electronic address: gerard.tayeb@fresnel.fr pare in Sec. IV C the directly calculated reflectivity curves

1063-651X/2003/6(6)/06660118)/$20.00 67 066601-1 ©2003 The American Physical Society



GRALAK et al. PHYSICAL REVIEW E 67, 066601 (2003

with experimentally measured data on a silicon woodpileare solved in the third directiof81]. Instead of being pro-
photonic crystal designed for a wavelength of L& [12]. portional toM? now N'=_M? (and the typical required num-
Here, we benefit from the efficiency of the method, whichber of plane waves is¥ 7 to obtain a 1% error for the first
permits us to take into account the structural imperfections oband[22]).
the sample and the frequency dependence of the silicon per-
mittivity. These results complement our previous study of 2. The new numerical method
this experimental setup, presented in R&7]. Finally, in oy numerical method is similar to the one based on the
Sec. V, we study the existence of photonic band gaps iRcattering matrif22,31 (and hence has the same character-
woodpile devices. Thus, we conclude that it is possible 1qgticg) but with two fundamental improvements. The first is
construct woodpile structures with photonic band gaps, using consequence of the stable algorithm presented in a previous
ordinary materials, transparent in the optical range and, as per[36]. Using the sophisticated techniques used for grat-
consequence, that it is possible to suppress spontaneoyts in Ref[37], the latter has the feature to solve Maxwell's
emission in the optical regime. equations without numerical instabilities for both the infinite-
(in three space directiorand finite-thicknessi.e., infinite in
two space directionscases. Thus, we refer to our general
ll. STATEMENT OF THE MAIN RESULTS numerical framework as the “grating method.” The second
A. The numerical method improvement relies on a generalization of the method of

“exact eigenvalues and eigenfunctions” employed in the
We show here that our method is better adapted to thgtudy of Igmellar gratingi24 g@- Py

case of woodpile structures than the plane-wave method |jq «
[28-30, the Korringa-Kohn-RostockdiKKR) method[14]
and the method based on the scattering maf31].

grating method” consists in first solving Maxwell's
equations for a finite-thickness photonic crystat a grat-
ing), and then imposing boundary conditions at the bound-
aries of the top and the bottom planes which delimit this
grating. We now denote any quantity that is contained in
The plane-wave metho28-3( is the most frequently these planes by tangential. By imposing different boundary
used numerical method for photonic crystals and, in particueonditions, we are able to estimate different quantities from a
lar, for woodpile devices. It involves an expansion in thesingle numerical code.
Fourier (or plane-wavesbasis for the electromagnetic field (1) The outgoing wave conditiof81,37] gives the reflec-
and the permittivity in the three space directions. Recall thativity and the transmittance.
if M is the number of Fourier coefficients used to expand a (2) The “point current source” conditiofi31,3§ gives the
periodic function in one space direction, then the total num-Green’s functior(i.e., the electromagnetic field radiated by a
ber of plane-waves growth with/=M3. The electromag- point current source and then the local density of sjates
netic field and the permittivity being discontinuous, conver-  (3) The Bloch boundary conditio[86] gives the disper-
gence is poor andV’ must be very highmore than &7 sion relation and other quantities for infinite structures in
X7 for an error of only a few perceff3,37), leading to  three space directions. We think that imposing this condition
considerable calculation time. Moreover, this method cannolithout numerical instabilities is a fundamental improve-
handle frequency dependent or complex permittivities andment since it allows convergence tests that ensure the accu-
in addition, does not provide quantities associated wittracy of the results.
finite-size structuretsuch as reflectivity or emitted power by ~ Moreover, the stable algorithm can provide a very impor-
embedded atomswvhich can be compared to experimental tant reduction of calculation time. Indeed, for a given fre-
measurement. quency and two tangential components of the Bloch wave
The KKR method, adapted to Maxwell's equatidi<l],  vector, the algorithm provides all the third components of the
gives a solution to many problems encountered with thdatter. The Brillouin zone is then reduced to its projection
plane-wave method. Convergence is féstrequires about onto the tangential components plgaesolume is reduced to
3% 3 spherical waves, while the plane-wave method requirea surface in the three-dimensional case and a surface is re-
7X7x7 plane wavesand it can deal with frequency depen- duced to a line in the two-dimensional case
dent and complex permittivitf16,33. Moreover, in tandem The second improvement consists in benefiting from all
with results about sums of spherical waves for two-the sophisticated techniques developed in the numerical
dimensional lattice$34], this method makes it possible to study of gratingd37]. The numerous techniques developed
solve Maxwell's equations for finite-width structur¢35]. in the study of gratings are now mature since the st8faled
However, the KKR method, with its emphasis on spherical oR algorithms[39] of continuation into the third direction
cylindrical symmetry, is poorly adapted to woodpile crystals.have been established and since the convergence of the Fou-
The most efficient method currently used for the study ofrier series has been systematically improy4d] when they
woodpile structures is, to our knowledge, based on the scatre used. Among these available numerous techniques, we
tering matrix[22,31]. Indeed, this method can deal with fre- mention the efficient integrdld1] and differential[42,43
quency dependent and complex permittivities and can deahethods that allow one to solve general problems. We also
with quantities associated with finite-thickness structuresnention the modal metho@t4,45 that takes advantage of
[31]. Moreover, the plane-wave expansion is only used irthe piecewise invariance in the third direction of the permit-
two directions of the real space, while Maxwell's equationstivity (this modal method is a generalization of the method

1. Existing numerical methods
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based on the scattering matrix presented in R&f]). For  woodpile crystal with tangential spatial periods twice the
woodpile structures, we have generalized the method of exeriginal ones.
act eigenvalues and eigenfunctions in order to take advan- However, the comparison shows significant differences
tage of the single variable dependence of the permittivity irbetween the theoretical results and the experimental mea-
each layer. surements of the reflectivity for wavelengths outside the
The method of exact eigenvalues and eigenfunctions hadsand gap, even if we take into account the silicon dispersion
been developed for the numerical study of lamellar gratingsand (or) the structural imperfections described above. We
[24]. Taking advantage of the geometry, the electromagneticonclude that, in this wavelength range, the many slight fluc-
field is expanded on a suitable basis and the permittivity iguations of the structure lead to important perturbations
exactly represented. Since these pioneering works, the maimhich blur the effect of the periodic arrangement.
contribution to this method is certainly its rigorous extension
to conical mounting$26]. This extension gives the possibil- 3. Numerical study of photonic band gaps in woodpile structures
ity to generalize this method to woodpile structures and then \ye investigate the relative band gap width in face-
to benefit of its advantages. The fast convergence speed 0figntered-cubic woodpile crystals similar to the experimental
served for the lamellar grating is also found for WOOdp'Iedevices[ll—liﬂ. A unit cell of these face-centered-cubic lat-
structures, leading to a very imporgant reduction of calculayjces consists of a dielectric background surrounding two
tion time: the method require§=M"=3x3 of basis func-  jyentical, perpendicular, nonoverlapping, and contiguous di-
tions for an error around 1% for frequencies correspondingeciric rods with rectangular cross section. The relevant pa-
to the first band number, while>y7 plane waves are re- ameters are then the filling ratithe ratio of the rod width
quired provided the most efficient existing meth@®®] is  anq the unit cell widthand the index contrasthe ratio of
used. This improvement is very useful since it allows Us tone dielectric rod’s index and the background’s indésary-
consider more complicated structures that are closer to thﬁa,g these parameters, we found that the minimal index con-
experimental realizations. trast required to open a band gap is equal to 2.091 (a
filling ratio equal to 0.430.01 is then required Note that

B. Results we made convergence tests to ensure the accuracy of the
. . result.
1. The mathematical formulation Finally, we consider a woodpile crystal with a relatively

The first result of the mathematical formulation is that, in|OW index contrast, equal to 2.25, which can correspond to an
each layer, there is a decoupling of the vector field equationgrdinary transparent materigduch as TgOs) and air in the
into two independent scalar equations. Our second result Rptical range. We show that, in this case, the relative band
the introduction of a continuation procedure, permitting us todap width is equal to 3.5%0.1% for the optimal filling
solve an elliptic evolution equation. With these results, weratio, equal to 0.380.02. Taking into account a structural
obtain an expression for Maxwell's equations for Woodp"eimperfection similar to the one of the actual silicon woodpile
structures in terms of simple scalar operators and it is poscrystal[12] considered in the experimental validation of the

sible to determine the eigenvalues and the eigenfunctions ¢pethod, we show that a band gap still opens for a deviation
these operators exactly. as far as 18% of the unit cell width. In particular, for a

deviation of 10% of the unit cell widtlthis deviation is
similar to the one of the considered experimental silicon

woodpile crystal, the relative band gap width is equal to
In this paper, we compare our numerical results with the2 204+ 0.1%.

experimental measurements of the reflectivity on silicon
woodpile photonic crystdll2] for wavelengths ranging from
1.0umto 1.7 um.

The comparison shows good agreement for the upper
band gap edge and for the reflectivity for frequencies in the In this section, we give a self-consistent presentation of
gap (the difference is always smaller than several pergentsthe extension to woodpile structures of the method of exact
except for a deep peak in the band gap in the experiment. Weigenvalues and eigenfunctions derived for the gratings in
show that this peak is not the consequence of dispersion inonical mountings in Refl26]. We show how to obtain in
silicon (indeed, the effect of silicon dispersion can be ne-the presence of woodpile structures a large class of solutions
glected since the frequency dependence of the permittivity i&,, of the Helmholtz equation
quite small in the considered frequency ranget of a struc-
tural imperfection of the experimental setup. A scanning [w>—e VX u VX]E, =0, @
electron microscope imad@7] shows that every other sili-
con rod which constitute the woodpile crystal is slightly wheree is the permittivity, u is the permeability, and is
shifted as mentioned in Refl2]. Taking into account this the frequency. For the sake of simplicity, we only consider
structural imperfection, very good agreement is obtained foreal frequency and real, strictly positive and bounded, per-
the position, width, and depth of the peak. Finally, as re-mittivity and permeability since the generalization to any
ported in Ref[27], the theoretical explanation of this peak is complex valued functions does not differ from the one given
due to the fact that the structural imperfections lead to an Ref.[26]:

2. Experimental verification of the numerical method

Ill. THE METHOD OF “EXACT EIGENVALUES AND
EIGENFUNCTIONS”
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Z3 We investigate solutiong,, H,, whose restrictions in
every horizontal planénormal toe;) are square integrable:
ISt layer V(w) =V(flf1) J 2|Fw(X11X27X3)|2XmdX2<OOI X3ER1 (6)
27 Jayer v(x) = v(z2) :
3'd Jayer v(z) = v(z1) whereF _=E_ ,H, .
The first consequence of E(p) is the possibility to per-
v=e,p form a Floquet-Bloch decomposition associated with the

two-dimensional periodicity3). Thus, we investigate solu-
FIG. 1. A woodpile structure made of three stacked layers. ONSE, H that satisfy

weR, O<8_$8$8+, 0<,U«—$/-L$/*L+v (2) f |F(X1,X2,X3)|2dX1dX2<OO, X3€R, (7)
\%

wheree_, &, , u_, andu, are positive real numbers. ] ] N
with the partial Bloch boundary condition

A. Notations F(x+d)=exp2imk))F(x), xeR?, ®)

1. Geometry . . .

_ ‘where ;,k,) is fixed in [—1/2,1/2?% F=E,H, and j
Throughout this paper, We3 use an_orthono_rmal basis_ 1,2. Note that for the symbolE andH, we have omitted
(e1,62,63): every vectorx in ¥ is described by its three he fixed parameters, k,, andk, in order to clarify the
componentsx;, Xp, andxz. The structure we consider is f,rther calculations.

periodic in two directions with spatial periodg=d, ;e; and The second consequence of E6). [or Eq.(7)] is that the

dy=dp ! restrictions to every horizontal plane ¥f<X E andV X H are
N 3 locally square integrable as w¢ffom Egs.(1), (2), and(5)].
vixtd)=v(x), xek © Then, for alli,j=1,2,3 andi #j, E; andH; are continuous
where v=¢,u, and j=1,2. The unit cell of the two- functions of the variablex;. In particular, the tangential
dimensional lattice associated with this structure is componentd, , Ep, Hy, andH, of E andH are continuous
functions of the variable. It follows that it is possible to
V={x=a,d;+a,d,|a;,a,e[—1/2,1/2}. (4)  solve Maxwell's equations in a stack of layers by the follow-

ing two steps: the first step consists in solving Maxwell's
Then, a woodpile structure is a stack in the third direction ofequations in each layer independently and then the second
layers, wheres and . are functions dependent on a single step consists in connecting each independent solution using
variable, the latter being, or x, (Fig. 1). In practice, each the continuity ofE,, E,, H;, andH,.
layer is made up from infinite parallel rods with rectangular
cross sectioriFig. 2). Thus, the functions andu are piece- B. The mathematical formulation

wise constant. _
In the following Secs. lIB 1, IlIB2, and 1lI B 3, we

2. Electromagnetic field consider a single layer of rods bounded by the horizontal
planes defined by the equatiorg=0 andxz=h (Fig. 2),
wheree andu are functions of the variabbe, only (the case
wheree and u depend orx, is similan:

In order to obtain a set of first-order differential equations,
from Eq. (1), we define

Ho=(0p) 'V XE,. (5) 0=xs=h=s()=e1(x), wX)=w(x). (9

Note that this quantity differs from the usual “harmortit

field” by the complex numbef. 1. Decoupling of the field in a layer

With definition (5) and notation(9), Eq. (1) is equivalent
z3 to the set of first-order equations

E=(we;) 'VXH, H=(wu;) VXE, (10

T in the considered layer. After eliminating the vertical compo-
nentsE; andHs, one obtains the equation

Fl —&10'I1z92 O'1+(910'Il(91

Fa

Fi
Fa

n
/ | dit —
T
FIG. 2. A layer made of two rods per unit celi; and u are ) ) o ) _
piecewise constant and periodic functions of the single varieple Whered; is the partial derivative with respect to the variable
The thickness of the layer Is X; (j=1,2,3) and

d3

., (1D

_0'1_&20;1(92 (920;1&1
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0 & E; Since the functiong; and u; (and then the matrixr;) are
n=el o) Fizly.|r 1712 (12 x5 independent in a single layer, E@Q.1) implies that
1 i
|
2 o1 B -1 -1, . -1
o F1| | 0170101701017 01020, 792 01920, 791=d10 "90 F1 13
\F2] | 010107 0= dp07 tor0y — 05— 0,07 *dp01— 019107 “91 || F2)’

Since the matrixo is X, independent in the considered tion algorithms[39] that permit to solve equations similar to
layer, we haves; 'd,01=d,=0,d,0, ", so from the last Eq.(14) have been developed. So, inspired by these numeri-

equation, cal algorithms, we will define a suitable continuation proce-
dure.
, p, O We define for all\ in (—%,w?e, u. ] and for alls,t such
d3F1=—LiF1, L= o L. | (149 that o<|t|<|s|<h/2<m/(4w\e,pm,) two real valued
1 functionsf,  andg, s given by
where N
cog VA(t+9)]
LV1: (1)281,LL1+ (917/1 1(91V1+ L?%, Vi=&1,M1- (15) ft,S()\)_ Coi \/XZS] ’ (186)
Solving Eq.(14) will provide the vectord; and its first .
derivative 3;F ;. Moreover, from Eq(11), the vectorsF,, )= sif VA (t—s)] 180
F,, anddsF, are related. Maxwell's equations are then re- Ges(M) = \/Xcos{ \/XZS]' (18D

duced to Eq(14), which can be considered as two scalar and

independent equations for the componeaisandH,. This Note that cos(\) and sing/\)/yx can be expressed as a

(mensional sructure makes e Soluton casier on both (EOYSr SEreS iMk and that functonsi, and g, are un-
hf%rmly bounded (with respect tos, t, and \) by

mathematical and numerical sides. 1/cosbwve ). Since L, is self-adjoint and semi-
bounded, we can define, by the functional calcyig], the

operatorsf; o(L;) and g, ¢(L;) which are self-adjoint and

In this section, we solve Eq14) using a suitable continu- - yniformly bounded. Now, we can define the propagator
ation procedure. In order to clarify the calculations of this

2. Continuation of the field in the third direction

section, we rewrite this equation as the evolution equation R(Ls) - foo(Ly) ~gus(L1) 9
d?y ’ —Ligis(Ly)  frs(ly) [
W(t)z —Ly(t), (16)

which has the usual properties of propagatp43] and,

in the Hilbert space Hi=H, ®H,,, where H,, which satisfies

=Lﬁlyk2(v,v1dx1dxz;C) is the set of locally square inte- drR
grable and complex valued functions with the boundary con- a(t,S) ==
dition (8) and the inner produgt-, -)

1
[Ll 0 R(—t,s), (20

Vl:
1 sincef, s andg; s are infinitely differentiable with respect to
¢,¢meJ B(X1,%Xz) b’ (Xq,X2) v1(X1)dXq X, t (ands). Finally, if we define

v

17

where|V|=d, 1d, ,andv; =g, u,. First, we remark thatt ;
defines a self-adjoint operator iH;. Indeed, it is easy to
verify that L, is a symmetric and semibounded operatorthen the combination of Eq$20) and (21) shows that/(t)
[Li<w?c,u, from Egs. (2), (14), and (15)]: the self- satisfies Eq(16) for all tin [—|s|,|s|]. In particular, taking
adjointness can be shown by quadratic form technig@és  Eq.(21) with s= —h/2 andt=h/2, one obtains the relation-
Sincel, is not a positive operator, we cannot use the usuaship¥ (h/2)=R(h/2,—h/2)¥ (—h/2), i.e., a relationship be-
continuation procedurgt7,48 to solve the Eq(14). On the tween the values af andd/dt at the boundaries of a layer
numerical side, this problem emerges with the instabilities obf thicknessh (Fig. 2). Note that the propagatoR(h/2,
the transfer matrix. However, suitable numerical continua-— h/2) is similar to theR matrix used in theRk algorithm[39].

P(—1)

(dydn) @Y

V(t)=R(t,8)V(s), \p(t):[
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one considered in Secs. Il B 1, 1l B 2, and 11l B 3. Then, the
bottom layer is delimited by the planes defined by equations
xz=—h andxz=0 (Fig. 3), and functions and n satisfy

—hsxg<0=ze(X)=£2(X2), m(X)=pa(Xz), (25

wheree,(t) =&,(t) and u,(t) = u4(t) for all realt since the
two layers are identical. We denote lay, the associated

matrix that is analogous to the matrix (12), and by
FIG. 3. The “superlayer” of a simple woodpile crystal. This

superlayer is made of two layers that are identical after a rotation of
90° of one of them.

L2:U§+520515202+0§ (26)

the operator associated with the bottom layer which is analo-
gous to the operatot, (14) and (15). L, defines a self-

We continue the calculations of Sec. IlIB 1. Since adjoint operator in the Hilbert spadé,="MH,, ®H,,, where
the equations are considered in the Hilbert spéate,

Fi(-,-.x3) and @sF;)(-,-,X3) are, respectively, denoted by
Fi(x3) and (@3F;)(X3), j=1,2. From relation(21) the val-
ues ofF, and d;F at the planegdefined byx;=0 andxs;
=h) bounding the considered layer of thicknésare related

by

3. Solution of Maxwell’s equations in a layer

H,,= LEl,kZ(Vi vodx dxy;C), va=e3, 2.

The general solution of Maxwell's equations in the top
layer satisfieg23) and, from a similar reasoning, the general
solution of Maxwell's equations in the bottom layer satisfies

2

i F2D o5 'Fi(=h) ,
F1(0) R(W2-h2) Fi(h) } 22 Mg, ) M ko) | @
(d3F1)(h) ' (d3F1)(0) ]
where
Finally, using that, from Eq.(11), (d3F1)(x3)=(L;
— 95) 0y *Fo(x3) — 3107 t9,F 1(X3), we obtain the following 1+0n(Ly)daoy ta;  —fr(Ly) }
relation for the tangential components of the field: M,(h)= _ 1.0
g P 2 —fn(L2)d205 01 LaGn(Lo) + 05 ',
acho| O S nyqm] 720 (23 L)(#—L,) 0
p— _ s p— (9 —
1 Fl(h) 1 o1 1F2(h) _ gh( 2)( 1 2) (28)

_ , fr(la)(i-Ly) = (di-Lp]
where, denotingf _2n2 and g_p2n2, respectively, byfy,

andgp, At this stage, the combination of Eq®3) and(27) gives
the general solution of Maxwell’s equations in the superlayer

M, (h)= 1=gn(L1)d101 "9z Fr(Ly) made of the two layers. These equations can be considered as
! fn(Ly)drog L, L10n(Ly)— 107 235’ four relationships between six elements7df since, from
Eq. (2), this Hilbert space is isomorph t,. In the general
{—gh(Ll)(Ll—ag) 0 case of an superlayer made wf layers, one obtains 2
Nq(h)= 5 > 1. (24  relationships betweenn2+ 2 elements of;. So, in order to
fr(L1)(Ly—d3) —(Ly1=d3)

obtain two additional relationships, the next step consists of

Relation (23) gives the general solution of Maxwell's ?mposing the condition at the boundaries of the “superlayer,”

: . . i.e., at planes defined by equatiomg=h and x3=—h.
equations in a layer of thickness= m/(2wye ). Note [ b e impose the periodic boundaries condition in order
that this limitation onh is introduced to ensure the absence . P

S . o . to obtain Bloch solution in the crystal.
of a division by zero in definitior{18) of functionsf, s and da=d d d be the third ial iod
ge,s- Without this limitation, a discontinuity could appear in . IF]et 3_d 31|1e1+ 3'2?2%] 3.3% edfj.e third spatia ;;]eno
propagaton(19) leading to the impossibility for the continu- of the woodpile crystal. Then, in addition to B@), we have
ation of the field. Finally, when the layer thickndssxceeds
the valuew/(2w+e . u ), a solution can be found by divid-
ing the layer into “sublayers” of sufficiently small thickness.

v(x+d3)=wv(x), xeR3 (29

wherev=g¢,u, anddsz=2h since the crystal is generated
by the superlayer of thicknes$12Now, we define the trans-

4. Bloch solution of Maxwell's equations in a woodpile crystal . .
a P 4 lation operatorfT acting onH; by

In this section, we consider a simple woodpile crystal

consisting of an infinite stack of identical “superlayers,” (TY)(Xy,X2) = (X1 +d31,Xo+d30)  (X1,Xp) V.
each “superlayer” consisting of a stack of a top and a bottom (30
layer (Fig. 3.

These two layers are identical after a rotation of 90° ofSo, finally, a Bloch solution in the woodpile crystal has to
one of them. Now, suppose that the top layer is similar to thesatisfy Eqs.(23), (27), and
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TFa(h) Fi(—=h) N =—(\pt+k3 , , 36
O | 31 (¢m N1 22n)2, = = (At kg {bm, bn)s,,  (36)
TF,(h) Fa(—h) o R
where m,n are in N, and where we used the identities
whereks is fixed in[ —1/2,1/2). (m L0107 Tbn) 2= (¥m. 01 ‘bn)ra fr(L1) bm
:fh()\m)ﬁbmr andgh(l-l)d’m:gh()\m)ﬁbm-
C. The numerical method Numerically, the operator$/1,(h) and N,(h) are trun-

cated in order to get matrices. Hence, we have to choose a
gnite set of eigenvalues and eigenfunctions. From &d),
each eigenvalue df, is either an eigenvalue djgl or an

In this section, we give an explicit expression for tRe
matrix associated with a stack of layers that can be use
directly in numerical computations. Thi® matrix gives the

general solution of the homogeneous Y. eigenvalue ot , : we denote the set of eigenvalues of these
scalar operators b, ,[pe N} and{\, ,|pe N}, respec-
1. The expression of the R matrix for a single layer tively, and we number them such that
We consider the same layer as in Secs. llIB1, 1l B 2, )
and 11l B 3. Appendix A shows how to determine in a general e =Ny 1= Ny 20 ZNy o (37)

case the eigenvalugs ,|ne N} of the operatot,, the asso- ) ) )
ciated eigenfunctiong$,/ne N} and the set of functions wherev,;=eg,,u,. Then, the considered set of eigenvalues is

ne N} defined b
{‘/’n| } y Al'N:{)\Vl,p|p$M V1=81,,M1}, (38)

Yn=01 010160, Lidn=Nnn, nelN. (32 o _
where NV is an integer. For alh=1,2,...,2V, the eigen-
We denote by-, )y, the inner product irt;. SinceL; is  value\, can be defined bkn=Ng, p if N=2p—1 and\,

self-adjoint in4;, we can normalize its eigenfunctions such — ) o if N=2p, wherep=1,2 N. LetK - be the ma-

that they form an orthonormal set trix associated with the operatoK with coefficients

’ =1, , =0, m#n. 33 (ém.Kén)a. The choice of the set of eigenvalues
(dn d)n)Hl (bm ¢H>H1 @3 (39) is justified since, for example, the difference between

The eigenfunctions of the operatoy are also eigenfunctions the operator [fn(L1)—1] and the associated matrix
of the operatorsl, and g5 (Appendix A. Let {ikopjne N} [fa(Lin)—In] is less than 2mdexp(—/[\, Ah),
and{—k§‘n|n e N} be the associated sets of eigenvalues: exp(—‘/|)\’ul’N{ h)} if No, y-and, u are negative; the con-
. 2, _ 2 \ vergence is exponential for this compact operator.
Ipbn=ikondn, F2¢n=—kKn¢n, neN. (34 Now, from coefficient436), we obtain the expression of

For the sake of clarity, the operatdvk, (h) andN,(h) are the R matrix associated with the considered layer
expressed in block forms.

Mi;1 O j N (h)_[Nl,ll Nl,lj Riny=
Mizr Miz 7 Nia1 Nizol

_1 ~ ~
IV|1,11/\/ M1,12N. (39)

Ni2iy Nizon

M;(h)= Mot Mygou

(35 Note that thisR matrix is expressed using the set of eigen-

functions ofL, and the inner produdt- , - in H,. More-
Then, the expression of operatdvk,(h) andN4(h) devel- ! P d >H1 !

oped on the eigenfunctions &f, can be deduced from the OVer, from Eqgs.(23), (35), and (39), this matrixRy y con-

coefficients nects the values of; and GIle at the planes delimiting
the layer. Thus, expressid39) for the R matrix cannot be
<¢m,M1111¢n>H1=<¢)m,¢n>Hl used to connect the solution of the considered layer to the
solutions of the adjacent layers. An expression in a basis,
— In(Nm)iKan(¥m, o1 Y bn)ae,, independent of the layer, is then necessary.
Let H be an Hilbert space isomorph #¢, and(-, - ) the
(pm,M 1'12¢n>H1= fh()\m)<¢m,¢n)Hl, inner product in this new Hilbert space. In practi¢écan be
Lﬁlvkz(v,dxldxz;‘@z), i.e., the set of locally square inte-
(m M1 21002, = FnNm)iKon( i, o1 Y bn)ae,, grable andC?-valued functions with the boundary condition
(8) and the usual inner product. Lgt,/ne N} be an ortho-
(ém:M12000)2, = NmGh(Am){ Pm, Pn)r, normal basis ofH (in practice, this set can be the plane
) . waves basis since it will not lead to convergence problems in
—ikon(¥m. oy d’n)Hl! woodpile structures The expression of thR matrix in this
new basis is
(GmN11160) 2, =~ In(Am) A+ KS o) (B ) )
Qv 0 J_ [Py O
_ 2 Rinv= ~1|R1 : (40)
<¢mvN1,21¢n>H1_fh()\m)()\m+k2,m)<¢ma¢n>Hl’ 0 Q/\/ 'N{O PJ\J
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whereP,,andQ,, are, respectively, the matrices with coef- In this section, we will show how to combine the two matri-

ficients (e, dn)x and (en,o1dn)y, Mn=1.2,...,2V. cesR; y andR;  to obtain theR matrix associated with the
We denote by, the column vector associated with the vec- superlayer. This combination of the tw matrices(or the

tor ¢ in ‘H with coefficients(e,,¢);,, n=1,2,...,2V.  R-matrix algorithm[39]) can be considered as an associative
Then, from Eqgs.(23), (35), (39), and (40), we obtain the group law denoted by the symbel[39].

relationship Similarly to R, (41) and Ry, (42), the R matrix

Ry %R, associated with the stack of the two layers pro-

Far0) FiM0) vides the following relationship:
o)~ R Ey ) “1
2 : Fod=m]__ o [Fad=h) 4s
which gives the general numerical solution of Maxwell's Foa(h) TR R2 Finh) | (43)
equations in the layer. . .
The comparison of Eq$41)—(43) shows that the expression
2. The expression of the R matrix for a stack of layers for the matrixR; y* R, - can be deduced from Eqgtl) and

42) by eliminating the vector§, ,(0) andF;,(0). Thus,

We consider here the same superlayer as in Sec. 1l B he matricesR, , andR, , are expressed in block forms

From the operator,(h) andN,(h) (28), we obtain theR

matrix R, - associated with the bottom layer. THsmatrix Riun Ry
gives the relationship Rj v= . =12 (44)
Riainv Rj2on
L B en, after the elimination of the vecto an
Ford=h)| __ [Fim(=h) (42 Then, after the el f th B, ,(0) and
For0) MFM0) | F1(0) in Egs.(41) and(42), we obtain
|
- _{Rz,nN_Rz,lzN(Rz,zzN_R1,11N)_1R2,21N Ro12MR2 220 Ri11p) "R } 45
AN —RyomMRe2on— Ry1in) " Re21 Ri228— R120M Rz 200~ Re 1) ' Ryaop]’

Note that the group law associated with thiR-matrix al- check energy conservation and we compare the theoretical
gorithm is exactly the same as the one defined in [B].  calculations to the experimental measurements. These three
This continuation algorithm will not lead to numerical insta- checks focus on the reflection properties of an experimen-
bilities since it is derived from the continuation proceduretally realized woodpile structurgl?] designed to present a
defined in Sec. Il B 2. In the general case of an superlayeband gap around the wavelength equal to ArB.
made ofm layers, one just has to combima R matrices The considered woodpile structure consists of a stack of
using the lawx [39]. five identical layers made of rectangular silicon roBigy. 4).
Finally, we show how to use the translatidn(30) in  The silicon rods have a height equalhte- 200 nm and width
order to obtain theR matrix associated with the superlayer equal tow=180 nm and their axis to axis spacing dg ;
that generates the woodpile crystal considered in Sec=d,,=650 nm. The layers are stacked such that two first
1B 4. The translationT can be considered as the basisneighbors are perpendicular and two second neighbors are
change from{e,/ne N} to {T 'e,|ne N} since, from the displaced relative to each other 8y,=d, ;/2=325 nm and
unitarity T-*=T%, (e,, T¢)»=(T ‘e, )y, Whereyisin  d;,=d,,/2=325 nm. The media above and below the

‘H andn is an integer. Hence, the fin® matrix is structure are, respectively, air and silicon. Finally, there is a
Ei
Ry= (l)N 'IO'N Rl./\/*Rz_A/{ (l)/‘/ ?’;/1 ’ (46) i , i

where 1y andT,, are, respectively, the matrices with coeffi- " : di,1 |d3’1| |w<_,|
oy 2° 7™ O n M

Fa(=h) :RN{F“\’(_h)] (47) — lil

TFo(h) TF1A(h) Y N N 8

v

IV. VERIFICATION OF THE NUMERICAL METHOD o o .
FIG. 4. Representation in the incidence plane of the considered

In this section, we check the numerical method we havevoodpile structure: the parameters of the structure are given in the
presented. For this aim, we realize a convergence test, wext; the incident electromagnetic fielfl,H' is p polarized.
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1.0 Finally, if A is equal to 33 (dotted line in Fig. 5, the

) ! obtained curve differs significantly from the converged one
only for the normalized frequencies up to the band gap. This
last number is sufficient to obtain an estimate around the
band gap(especially to obtain an estimate of the band gap
edges, while the CPU time for a one point computation
becomes less than 0.2 s.

This convergence test confirms the one done for the band
gap edge and reported in REB6] [Table 1: for both reflec-
tivity and dispersion relation, the value<®s for the integer
Nis in practice sufficient. The associated CPU time is then
close to the one needed for the two-dimensional crystals.

- ———N=5x5
N=9x9

0.8

0.6 o

reflectivity

0.4 -

0.2
B. Test of energy conservation

: Since there is no absorption in the considered structtire (
0.0 — T and u are real-valued functionswe can check energy con-
6001 02 03 04 05 06 servation by comparing the flux of the Poynting vector asso-
wds,1/(2mc) ciated with the incident plane wayeormalized to unityand
- ) . the sum of the calculated flux of the Poynting vector associ-
FIG. 5. Reflectivity as a function of the normalized frequency ated with the reflected and transmitted f?/eﬂtﬁ?ectivity and
wdy ;/(2mc) with dy ;=0.65um showing the convergence when . - . .
the integer\ is increasing; the considered structure and incidenttransrglttancbh-rhe d'ﬁerence glv.ezth% errl](.-:‘rgy Conservatlcl)n
electromagnetic field are represented in Fig. 4. '?Jrg(;roui? ttl'?et rﬁar::iité'sx ;:inggzlﬁﬂqnfz;eat IS error 1s equa
hin sil itride | ith heiah o = This test is possible if the matrix truncation is such that
thin silicon nitride layer with height equal to' =70 nm(0p-  onergy conservatiof87] is not automatically satisfied. In the
tical |nde>.<.chosen equal to 2[@’9],) bgtween thgistrut_:ture numerical method we have presented, the energy conserva-
and the silicon substrate. The optical index of silicon is cho+io, can be broken due to the basis chatt®. The expres-
sen tlo beheqfual to 3.4kcorresponding to the value at a gjons for the matrice® , and Q, given in Sec. Il C 1 are
wavelength o ,1'5“m [49)). o , , such that the energy conservation is actually broken. In order
The Woodplle structure is _|IIum|nated' from the air by 1o save matrix inversion and then computation time, one
plane wave: its wave vector is perpendicular to the axis oiould be tempted to use the fact that the adjoint of the non-
the rods of the first layer and its direction differs from the ;. \cated matrix with coefficientée,,, )y is exactly the
. . ° . . - m»s»¥n
vertical axis by the angl@ equ_al to 20, (F.|g. 4. The INCI- inverse of the nontruncated matrix with coefficients
dent plane wave ip polarized, i.e., the incident electric field éd) e.)s.; the adjoint of the matrixP  is related to the
ms»*n 1’

E' is inside the incidence plane and the incident magneti . .
field H' is perpendicular to this plane. inverse of the matriQ,. We do not rec.omm.enq to use this
property for reflectivity computations since it will provide a
R matrix which implies the energy conservation rigorously.
A. Convergence test The link between energy conservation and the truncation
Figure 5 shows the reflectivity as a function of the nor-Procedure can be stated clearly. The vertical component of

malized frequencywd, ;/(2mc) for different values of the the Poynting vector is the real part[d;H,— E,H,]/2 and,
integer . We varied the normalized frequency from 0 to with notation(12), its flux through the plane defined by the
0.65. This range corresponds to wavelengths ranging frorgquationx;= *h can be written as
1 um to = if the spatial period], ; is equal to 0.65um as 0 1
for the experimental realizatidd 2]. Note that it includes the _ N
important wavelengths around 16m [corresponding to Re(Fo(= ), IRy (=) /2, J_[l 0
wd; 1/(27c)=0.65/1.5-0.43], where reflectivity is close to
100% for the considered incident plane wave. The giverThen, from Eq.(47), the flux of the Poynting vector through
reflectivity curves are obtained with the three values® the planes with equationg= = h are rigorously equal if and
5X5, and 3<3 of the integerV. only if the matrixR, is related to its adjoinR}, by

If the integerN is equal to % 9 (solid line on Fig. 5, the ’

obtained curve has completely converged since it is impos- Jy 0 Jy 0
sible to distinguish it from a curve obtained with a higher Rh=— RN{ } (48)
value of V. If Vis equal to 5¢5 (dashed line in Fig. ) the 0 —Jdy 710 -y

obtained curve is very close to the converged one for all

considered frequencies. This second number is sufficient tahere J - is the matrix with coefficientse,,,Je,)y, m,n
obtain appreciable precision while, for the considered struc=1,2, . .. ,2V. Relation(48), which is equivalent to the en-
ture, the CPU time for a one point computation is less than Ergy conservation together with the reciprocity theof&,

s on a PC equipped wita 1 GHz Pentium Il processor. is satisfied if one uses the adjoint of matRyx,to express the
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energy conservation error

FIG. 7. Representation in the incidence plane of the considered
woodpile structure for the experimental validation; the single dif-
ference between this structure and the ideal one represented in Fig.
4 is that, in each layer, every second rods is shifted with
=50 nm.

angle # equal to 20°. However, in order to complete the
study presented in Reff27], we take into account the wave-
length dependence of the silicdthe values of the optical
ndex for the silicon are taken from Rg#9]).

Note that, contrary to the ideal woodpile of previous sec-

tions, the woodpile with the structural perturbatidtig. 7) is

matrix Qi in Eq. (40). The truncation procedure and its not invariant under reflections with respect to vertical planes
consequences on the reciprocity theorem is also discussed d:'@ntalnmg the incident electric field' and magnetic field
Refs.[26,50. . Consequently, the electric fieldind then the reflected

Figure 6 shows the energy conservation error as a funcelectric field is not contained in the incoming plane and, the
tion of the normalized frequenayd; ;/(2wc) for the three  magnetic fieldiand then reflected magnetic figlg not per-
values 9<9, 55, and 3< 3 of the intege\ corresponding pendicular to the incoming plane. Moreover, since the spatial
to Fig. 5. This test on energy conservation confirms the preperiod of the woodpile with the structural perturbation is
ceding test of convergence.Afis equal to 9<9 (solid line),  quite large, there are several reflected orders. Since the ex-
the error is always smaller than 0.5%. Af is equal to 5  perimental measurements provide the reflectivity associated
X5 (dashed ling the error is rarely above 1% and always with the p-polarized field component in the specular order,
under 5%; this precision is acceptable in practice. Finally, ifwe have to consider only this component of the reflected
Nis equal to 3x 3 (dotted ling, the error is less than 1.5% field.
and acceptable for the normalized frequencies around the Figure 8 shows the experimental measureméregre-
band gap. sented by the open circlesf the reflectivity associated with
the p-polarized field component in the specular order. The
details about these experimental measurements are presented
in Ref.[27]. Figure 8 shows also the calculated reflectivity

In this section, we compare our numerical results with(represented by the solid lineon the woodpile with the
measured reflectivity data. This comparison completes thetructural perturbation of Fig. 7. The integ&f was chosen
study presented in Ref27]. There we showed that it is equal to 10x 11 for this calculation leading to an error less
necessary to take into account the following structural perthan 5% for the wavelengths ranging fromuim to 1.2 um
turbation: in each layer, every two rods are slightly shiftedand less than 2% for the other wavelengthste that we
(Fig. 7). So, in this section, the considered structure has horihave neglected the imaginary part of the optical index of the
zontal spatial periodd; ;=d,,=1300 nm. From the image silicon for this test on energy conservatioMoreover, we
presented in Refl27], we have chosen a shit of 50 nm  have realized a convergence test showing that the calcula-
and then, in each layer, the axis to axis spacing of two contions of Fig. 8 have converged.
secutive rods is alternativelyd; ;=700 nm and The comparison of the experimental measurements and
=600 nm (Fig. 7). This slight shift is the only dlfference calculations shows an excellent agreement for the wave-
between the structure considered in this section and thkengths ranging from 1.2um to 1.7 um. In particular, the
structure considered previously and represented in Fig. 4osition and the width of the dip around 1.42n are very
From now, we denote by “ideal” the woodpile without struc- well reproduced by the calculations, the difference of depth

FIG. 6. Error on energy conservation as a function of the nor-
malized frequency corresponding to Fig. 5; the considered structure
and incident electromagnetic field are represented in Fig. 4.

C. Experimental verification

tural perturbation represented in Fig. 4. being certainly the result of the averaging of the experimen-
In Ref. [27], the comparisons between calculated andal setup.
measured reflectivity with different anglés structure orien- The comparison for the wavelengths ranging fronuth

tations and polarizations are presented. In this paper, we fae 1.25um shows a significant difference. That is why we
cus on the single case represented in Figs. 4 and 7 with thieave also represented by a dashed line on Fig. 8 the calcu-
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1.0

Bloch solution no solution |

wd 1 /(2mc)

reflectivity in the specular order

. . —t——
10 11 12 13 14 15 16 17
wavelength [pm) 0.0

r X M r
FIG. 8. Reflectivity associated with th@polarized field com-

ponent in the specular order as a function of the wavelefttyth FIG. 9. Representation of the dispersion relation in the ideal
length unity is the micrometgrthe open circles@) correspond to  woodpile structure represented in Fig. 4: in abscissa, the tangential
the experimental measurements; the solid line corresponds to themponent K, ,k,) of the Bloch wave vector on the characteristic
calculated reflectivity on the woodpile with the structural perturba-pathT XMT", wherel’, X, andM have, respectively, the coordinates
tion (Fig. 7); the dashed line corresponds to the calculated reflec{0,0), (0,0.5), and (0.5,0.5); in ordinate, the normalized frequency
tivity on the ideal woodpile(Fig. 4). The solid vertical line at with d; ;=0.65 um; the frequency dependence of the optical index
1.48 um corresponds to the calculated band gap edge in the woodbsf silicon is taken into accour(the imaginary part of this optical
pile with the structural perturbation; the dashed vertical line atindex is neglected The horizontal dotted lines correspond to the
1.34 um corresponds to the calculated band gap edge in the ideddand gap edges: the frequensy corresponding to the upper band
woodpile. gap edge is atwd; ,/(27wc)~0.434 and the frequency_ corre-
sponding to the lower band gap edge iseat; ,/(27C)~0.356.
lated reflectivity on the ideal woodpile and taking into ac- The dashed line starting frofd corresponds to the curves in Figs. 5
count the wavelength dependence of the silicon. The differand 8 when the anglé is equal to 20°: it defines the upper band
ences between the two calculated curves only come from th@ap edge(horizontal dashed linefor 6=20° at wdy;/(2mc)
slight shift. The comparison of the two calculated curves~0.484; the horizontal solid line is atd, ;/(27c)~0.443.
shows that a small structural perturbation can lead to a non-
negligible difference for the wavelengths ranging from The dashed line starting froli is defined by the equation
1 umto 1.25um. So, we conclude that the significant dif- [ wd; ;/(27c)]sin#=k;, where@ is equal to 20° and it then
ference between the experimental measurements and calaterresponds to the reflectivity curves of Fig. 8. So, from Fig.
lations is likely to be the result of many slight structural 9, the upper band gap edge for this external arylis at
perturbations in the experimental realization, which have notd, ;/(27wc)~0.484 corresponding to the wavelength
been taken into account in the calculations. 1.34 um. We have represented this upper band gap edge in
Finally, as mentioned in Ref27], the difference between Fig. 8 by the vertical dashed line. One may remark that the
the two calculated curves for the wavelengths ranging frondip is then included inside the band gap of the ideal struc-
1.25um to 1.7 um is the result of the “superstructure:” the ture. Now, let us consider the woodpile with the structural
horizontal spatial periods of the woodpile with the structuralperturbation. Since the horizontal spatial periods are twice as
perturbation are twice as large as that of the ideal structurdarge as that of the ideal structure, the dispersion relation in
Figure 9 shows the representation of the dispersion relatiothis structure can be roughly obtained by folding the disper-
in the ideal structuréthe details about this representation aresion relation in the ideal structure as it is shown in R27).
presented in Ref[36]). Note that, in this paper, the fre- So, the solid line starting fronX in Fig. 9 provides an esti-
qguency dependence of the optical index of silicon is takermate of the upper band gap edge in the woodpile with the
into account for the dispersion relation. The imaginary partstructural perturbation aid, ;/(27c)~0.443 correspond-
of the optical index is neglected for this dispersion relationing to a wavelength of 1.4Zm. A rigorous calculation that
(although it is not for the reflectivity curves in Fig),&ut takes into account the structural perturbation gives this upper
this does not make problem since this imaginary part is alband gap edge at 1.48m. We have represented this upper
ways smaller than 0.006. From Fig. 9, a photonic band gapand gap edge in Fig. 8 by the vertical solid line. Then the
exists for normalized frequencies ranging from presence of the dip around 1.42n is not surprising since
w_d; 1/(2mwc)~0.356 tow . d, 1/(27wC)~0.434. The wave- this wavelength is not inside the band gap of the woodpile
lengths corresponding to these lowes () and upper § ) with the structural perturbation. Finally, for wavelengths
band gap edges are, respectively, 1,88 and 1.50um. ranging from 1.25m to 1.7 um, we can conclude that the
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w, a/V2 | 0.20
. X = = - N A B ,.'....
0/4_1_ L §_ 'f :§ . _I_layer ././1'7 _ 3.42«)’\.
. Eg Ep &g - 015 + ./ \.
FIG. 10. Representation of the considered layer; the horizontal ] o/ L. \
spatial periods ard; ;=d;,= a/\2 and the height ii=a/4. The 0.10 — ./ _/'1'7 —9 85\. ®
first dielectric rod of the unit cell of this layer has width and ] / _/ ’ \
dielectric constant and the second has dielectric constagpt S 4 u ®
0.05 / / \
presence of the dip is certainly the result of the the effect of " T, - e
the “superstructure.” Moreover, since the agreement be- ] 7 PN 250\0 - \
tween the calculations and the measurement is very good, we 0.00 4— — —740—17—1 == %O— ———w—— —
can also conclude that the periodic arrangement dominates o 4
over the other structural perturbations in this wavelength .
range. -0.05 —
0.0 0.5 1.0 1.5 2.0 25 3.0
V. PHOTONIC BAND GAPS IN WOODPILE STRUCTURES I/ o

In this section, we investigate the existence of photonic FIG. 11. Relative band gap widthas a function of the normal-
band gaps in Woodp”e structures. We consider a S|mp|@ed fl"lng ratio f/fo for different values of the index contrasgt
woodpile structure similar to the ones experimentally realthe solid circles correspond tg=3.45, the solid squares corre-
ized[12,13. It is generated by the superlayer considered inSPond t07=2.85, and the open circles corresponcts 2.25.

Sec. Il B 4 and represented in Fig. 3. The spatial perds So, in this section, we first determine the optimal filling

d;, and d; are chosen such that they generate a faceratio. Then, we determine minimal index contrast leading to
centered-cubic lattice in order to support the presence 04 photonic band gap. Finally, we study the influence of struc-
photonic band gap$3]. Let a be the edge length of the tural perturbation similar to the one observed in the experi-
associated cubed; ;=d, = al\2, d;sz=al/2, and d3;  mental realization.

=dz,=al(2 J2). Since the considered superlayer is made of

two layers that are identical after a rotation of 90° of one of A. Determination of the optimal filling ratio

them (Fig. 3, the height of these layers is=dj3/2=a/4. Since the permittivity is a single variable function in each

Finally, each layer is made of two dielectric rods per unit celllayer, we assume that the filling ratio

as represented in Fig. 10. The relevant parameters are then

the index contrast fo=(1+7)7" (52

associated with the Bragg condition in one-dimensional sys-
tems, should play a vital role. This physical assumption is
also supported by the fact that, in the mathematical formula-
tion of Sec. Il B, the operatork; (14) andL, (26) play a
determinant role.
f=w/dy ;= 2w/a. (50) Figure 11 shows the relative band gap widf1l) as a
) ) . ) ) function of the filling ratio(50) for the three values 3.45,
.The quantity that we investigate is the relative band 9ap 85, and 2.25 of the index contrad9). Note that conver-
width gence tests have been realized in order to ensure the accuracy
of the results and to obtain an convenient precision as re-
Wy W (51) ported in Ref.[36]. The value 3.45 of the index contrast
w,to_’ corresponds to the woodpile structure, we have studied in the
preceding section: with the optimal value of the filling ratio
wherew; andw _ are, respectively, the upper and the lowerat 0.29-0.02, the relative band gap width is equal to
band gap edges as defined in Fig. 9. Note that, due to defl-7.9%+0.1%. Note that this result confirms the previous
nition (51), g can be negative and the presence of a band gapne presented in Refl19] so that, the filling ratio of the
is equivalent tag>0. experimental realizatiorf12,13 is certainly optimal. The
The relative band gap widtly depends on both index value 2.25 of the index contrast can correspond to ordinary
contrastyn and filling ratiof. While it is well known that a transparent materials in the optical range such as air and
high index contrast is more favorable to open a band gap, th€a,O5 [51]: with the optimal value of the filling ratio at
influence of the filling ratio is not obvious. Indeed, contrary 0.38+0.02, the relative band gap width is equal to 3.5%
to the case of face-centered-cubic lattices of spHafglsthe  +0.1%.
band gap widthg is not a monotone function of the filling For both values 3.45 and 2.25 of the index contrast, the
ratio f [there is no band gap wherhas its minimal (0) or filling ratio f=1.3f, is very close to the optimal value. This
maximal (1) valuek is also confirmed for the values 2.85ig. 11), 2.33, and 3.6

n=1\eslep, (49

and the filling ratio

g=2
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FIG. 12. Relative band gap width as a function of the the
index contrasty: the solid circles correspond to the filling ratio FIG. 13. Relative band gap width as a function of the the

=1.3f, and the open circles correspond to the filling rdtief . normalized shiftsy2/a.

[19]. Then, from these numerical studies, we conclude thawoodpile crysta[12] considered in Sec. IV C and R¢R7].
the optimal value of the filling ratio is certainly arourfd ~ So, in order to complete the study presented in Raff], we
=1.3f, for the woodpile structure considered in this section.give in this section the influence of the shiftfor every two
rods in the woodpile structur@=ig. 7).
S _ Figure 13 shows the relative band gap width as a function
B. Minimal index contrast needed for a photonic band gap of the shifts. Note that the coefficierd/ /2 for the normal-
With this knowledge, we can vary the index contrast toization of the shift is equal td, ;=d, , in the ideal structure
search for the lowest possible value that opens a band gapnd tod, ;/2=d,,/2 in the structure with the structural per-
Figure 12 shows the relative band gap width as a function ofurbation. From Fig. 13, the band gap opens for a s#ift
the index contrast: with the filling ratio equal to 153solid  ranging from 0.0 until 0.1& 2. In particular, for a shift
circles, a band gap opens from an index contrgst2.05  equal to 0.18/+/2, the relative band gap width is equal to
+0.01; with the filling ratio equal tdfy (open circley a  2.2%+0.1%.
band gap opens from an index contrast equakte2.08 Figure 14 shows a representation of the dispersion rela-
+0.01. Note that the relative band gap widthfat1.3fy is  tion in the ideal woodpile structur@eft) and in the structure
always larger than the one &t f,. This confirms the con-
clusion of the Sec. V A, so that the minimal index contrast |
leading to a photonic band gap is certainly aroujw 2.05
+0.01 associated with a filling ratib=0.43+0.01. §v/2/a =0 5v/Ba =01

Bloch solution no solution

C. Woodpiles with contrast 2.25 0.61

In this section, we study the possibility for the realization AN
of a photonic woodpile crystal with a photonic band gap in | § g4+
the optical and infrared ranges. We consider an index con- E
trast »=2.25 corresponding to that of air and tantalum pen- =
toxide (TaOs) in these ranges. Note that this transparent 5 0.2
dielectric material is used to realize planar multidielectric
structures at optical scale and to implant erbium 5.

From the study of Sec. V A, the relative band gap width is 0.0 ‘ '
equal to 3.5%0.1% at the optimal value of the filling ratio I X'x M M T XM r

at 0.38-0.02. However, this band gap exists in the ideal g 14. Representation of the dispersion relation in the ideal
structure. So, we have to study the influence of the structuraloodpile structure(left) and in the structure with the structural
perturbations which appear in the experimental realizationsperturbation at5y2/a=0.1 (right): the index contrasy is equal to

The influence of many structural perturbations on the 2s; the filling ratiof is equal to 0.38. The coordinatesIof X and
band gap in woodpile structures have been studied in Refv are reported in Fig. 9; in the same coordinates system associated
[20]. However, this study does not contain the structural perwith the dual lattice of the ideal structure, the coordinateX 'oand
turbation due to the fabrication techniques of the siliconM’ are, respectively, (0,0.25) and (0.25,0.25).
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with the structural perturbation @/2/a=0.1 (right). These because of the developed fabrication technida@$and the
representations are similar to the one of Fig. 9. This figuresmall absorptiortaround 1% in the optical rangéhat takes
shows that a band gap exists in both considered structureglace. In order to characterize the properties of such absorp-
the band gap edges in the ideal structure are alive structures, it is necessary to determine the complex reso-
w.al(2\2mwc)=0.460-0.001 andw_a/(22mc)=0.445 hances associated with the Helmholtz operaldt] and the

+0.001; the band gap edges in the structure with the Stru(ge{]era::faéion o;‘]the Igcal (ljens(ijty of Sta{é%‘ Tt?]e humeri- it
wral perturbation 6y2/a=0.1) are atw,al/(2y2wc)  Cal method we have developed can provide these quantities

—0.457+0.001 andw_a/(2\2mc)—0.447+ 0.001. and we will present their calculation in a forthcoming paper.
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tutes a suitable starting point for further analytical estimates
of several quantities. APPENDIX A: DETERMINATION OF THE EXACT

We also presented three checks on our numerical method. EIGENVALUES AND EIGENFUNCTIONS
We performed a convergence test and checked the reciproc-

ity theorem. These two verifications showed that our numeri- We show here how to determine exactly the eigenvalues
cal method is very efficient. In particular, it requirdé= 3 and the eigenfunctions of the operatgrassociated with the

%3 basis functions for an error around 1% for fr nci first layer in a very general case. An analogous reasoning
asis functions for-an error arou o for freque Cesprovides the ones of the operator associated with the others
corresponding to the first band, whilex7 plane waves are

. s g ; layers, in particulat,.

ciclency provides a very important redution ofcalouiation, PO EXPrESSIIL4) every eigenvalua, of the operator
: . . : L, is either an eigenvalue &f, orL , . So, it is sufficient to
time and permits us to consider more complicated structures; ) ) 1 M1 ) )
We benefited from this higher efficiency in an experimentaldetermine the set of eigenvalu¢s, ,|peN} associated
comparison with the silicon woodpile crystal designed for awith the set of eigenfunctionge, ,|peN} of the scalar
wavelength of 1.5um [12]. We showed that if the structural operatorL ..
perturbation observed on the scanning electron microscope !
image [27] is included in the calculation, excellent agree-
ment with experiments is obtained for wavelengths around
the band gap. From expressiortl5), the operatot,, is the sum of the

Finally, we have studied the possibility to realize a wood-two operatorsw?euu,+ d,v; *d1v1 and d2; the first one is
pile crystal that has a photonic band gap in the optical rangen operator of the single variablg and the second is an
First, we have shown that the optimal filling ratio is certainly operator of the single variabbe,. Thus, we can perform a

aroundf =1.3fo, wheref, is the filling ratio(52) associated yariable separation; every eigenfunctionlgf can be writ-
with the Bragg condition in one-dimensional systems. NeXtten as !

we have shown that a photonic band gap opens from an
index contrast of 2.050.1. Finally, we have considered ¢V1,p(X17X2)=¢§)11)(X1)¢§)22)(X2), p1,poelN, (Al)
more precisely an index contrast of 2.25 corresponding to
that of air and TgOs: the ideal woodpile structure presents a

1. The equation satisfied by the exact eigenvalues

(1) (2) i i i
band gap with a 3.5% relative band gap width; the WoodpiIeWh(_:‘re ¢p1 and d)pz are, respectively, eigenfunctions of the

with a structural perturbation similar to the experimental re-first and second operators that constituig.
alization[12] presents a band gap with a 2.2% relative band It is easy to verify that the plane wave
gap width.

Moreover, as in the case of the face-centered-cubic lat- B (X2) =exp{2i ko +0(p2)1X2/dz 3, q(P2) € Z
tices of microspheregl6], we think it should be interesting (A2)
to study woodpile structures made from materials with small
absorption. The interest of such materials is that some o an eigenfunction of the operatef and satisfies the partial
them provide a high index contrast. Concerning woodpileBloch boundary conditioii8) reduced to the variabbe,. Let
structures, the most promising material is certainly silicon}\ffz) be the associated eigenvalue. Then, from B&),
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R T
Y 7N 7Y
g M2 g v =&, M1

FIG. 15. A layer made of three rods per unit celf<£3): the
three rods have widtlw,;, permittivity £,;, and permeability
M1y, =123,

)\E)ZZ): —{27[ka+q(pp)]/d, 2. (A3)
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the square rootA7d). In addition to(A6), vector(A5) has to
satisfy the partial Bloch boundary conditid8) reduced to
the variablex;

Fp,(d1,.0) = exp(2i mk;)Fp (0). (A8)

The combination ofA6) and(A8) implies that exp(Brk,) is
an eigenvalue of the matrik; (\{”); the equation

de{Tl(xg}l)) —exp(2imky)]=0 (A9)

determines the eigenvaluaépll). This last equation can be
simplified using the fact that def=1 [since, from Eq.
(A70), defl,;=1, j=1,2,... ], if exp(2i7k,) is an eigen-

value of T4, then exp(-2iwk;) is also. Thus, Eq(A9) is
equivalent to

Note that, as it is mentioned and used in Sec. llIC 1, the

eigenfunctiong, , (A1) with thex, dependencyA2) is an

eigenfunction of the operators, and ag: each eigenvalue
ik, that appears in relatio(B4) corresponds to an eigen-
value 2 7k, +q(p2)]/d; .

The x; dependency of the eigenfunctiqAl) is deter-
mined using the usual transfer matfis2—54. Let )\E)ll) be

the eigenvalue associated wigt” :

[w281M1+51Vfl<91V1]¢(1)_)\(1)¢(1)- (A4)

In order to obtain a set of first-order differential equations,

we introduce the column vector

¢(l)
(1)

(A5)
vy toyvy

Fp,=

Note that, from Eq(A4), the two components of this vector

are continuous functions. Now, suppose that the unit cell of

the first layer we consider is made gfrods of widthw,,
permittivity £, ;, and permeabilitye,j, j=1,2, ... .7 (Fig.
15): we denote by, ; the value of the functiom, in the rod

i»i=1,2,....7. Then, from Eq(A4), the vector(A5) satis-
fies[54]
Fp,(d10)=Ti(\{))Fp (0), (AB)
where
Tl()\):Tl,J(A)Tl,.Fl()\)’ : 'T1,1(}\)y (A7a)
T1j(N)=Pgj(N,wy), (A7Db)
cog B1,W) v1iB1;'Sin( B1jw)
Pyj(N,w)= ,
Vllﬂljsm(ﬁllw) cog B1jw)
(A7c)
:Bl,j: \Vw Sl,j:ul,j_)\a J :1,2, PR j (A?d)

Note that the four elements of each maffix; only depend
on ,6’1J ; expressior(A7c) is independent of the definition of

tr Tl(xg?) —2 cog2mk,)=0, (A10)

where trT, is the trace of matrixr;. Once the eigenvalues
)\éll) are determined from E@A10), the associated eigenvec-

tors qbéll) are also obtained using the transfer maf{f®8]:

first, the eigenvectdr pl(0) in C? [associated with the eigen-
value exp(2mk,)] of the matrile()\gll)) is determined:; sec-
ond, the expression Q;téll) in the rodj can be deduced from

Fp,(x1) =P1j(\Y X =g )Fp (X1j-1), (A1)
where
X16=0 2 Wi, i=12,....7. (A12)
Finally, the eigenvalues of the operatoy, are
Noyp= AN, (A13)

whose two parts are, respectively, given by E#sl0) and
(A3), and the expression of associated eigenvectors is Eq.
(A1), whose two parts are, respectively, given by Eéd.1)

and (A2). Concerning the functiongs,, (32) used in Sec.

Il C 1, they are equal to the functions

o, p(X1,X2) = (07 1010165 (1) (), (AL4)

wherep; andp, are inN, the expression of»l’lﬁlvlgbﬁ)ll) in
the rodj can be deduced from E¢A11) and the expression
of ¢(2) is given by Eq.(A2).

2. Numerical determination of the real eigenvalues

Here, we suppose that the permittivity and permeability
satisfy the hypothesig); the operatot., is self-adjoint and
its eigenvalues are then real. The only difficulty in the nu-
merical determination of the eigenvalugsl3) is to find the
real numbers)\gll) which satisfy the transcendental Eg.

(A10).
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Since the numbera(pll) are eigenvalues of the operator d dT,
w?eq 1+ 1y P v <w’e, . , these numbers are on the dn L TaN) =2 cog2mky) J=trpm (M), (A15)
semiaxis %,w?e,u.]. This property makes their nu-
merical determination easier. However, two difficulties can : o

) ; ; o : ; The expression of the derivative of the matiix can be
occur in this numerical determination. We give herein the .
. deduced from Eq(A7):

solutions we have adopted.

The first difficulty comes from the possibility for two con-
secutive numbera(pll) to be very close to each other. Our dT; dT; s dTi171

= e T T — = T
solution is to use an algorithm that determines the zeros of d\  dx /1 LT L1
the function t{(\)—2 cos(27k;) on the left side of Eq. dT
(A10) by taking into account this function together with its Ty Togn —=2, (A16)
derivative with respect ta.. If two numbers\{ are very Yo dr
close to each other, then the derivative is close to zero. Thus,
such algorithm needs to determine the function where, forj=1,2,... .7,
dTy; 1 Wl,jﬁl_,jlsin(ﬁl,jwl,j) V1,j/3£135in(/31,jW1,j)_ V1,jW1,j/31_,12005(/31,jW1,j) A7)
dN 2] wi ByisIn(Bywa ) + v1 Wy jCOS B Wy ) Wy B Sin( By W) '
|
The second difficulty comes from the possibility of nu- Tzl,j(t)=|v1,j|exmtarq i)l (A21)

merical instabilities in expressiond7c) and(A17) since the

numbersp,; (A7d) can have nonvanishing imaginary part. where argg, ;) is the phase of the complex numbey;,
Our solution is to multiply the four coefficients of matrices ;, =¢, 4, andj=1,2, ... .7. Substituting the numbens |

T,; and their derivativdA17) by the number (where v,=g, ;) for 7’1,]('[) in Eq. (A7), we obtain the

Nj=exd —[Im(Byj)lwy;], j=12,....7, (Al8) Lnatrile()\,t). For each value of, we define the numbers
: AT X(U(t) that satisfy
and the term 2 cosZ;) that appears in EqA10) by the
product trTo[X§(1),t]—2 cog2rk;) =0. (A22)

N=NgNg-1---Ni. (AL9) Then, the numberfsfjll)(l) are the desired complex eigenval-

ues\§! and the numberk (”(0) are real eigenvalues which
can be determined using the method presented in Sec. A2.
Assuming thatX{(t) are continuous and differentiable

3. Numerical determination of the complex eigenvalues

Here, the permittivity and permeability can take any com-
plex value; vy; is in C, where vi=g;,u; and ] _
=12,....J. The operatoL, is not self-adjoint and then, functions oft, the complex numbemgll)(l) can be esti-
its eigenvalues are, in general, in the complex plane. Thénated from the numbers()(0) by a numerical integration
determination of these complex eigenvalm%) that satisfy [55] of !

the Eqg.(A10) has been intensively studied using different

methodd 25,55,54. o . dx él) tr( ‘ﬁ-l /(?)\)[Xél)(t) ]
We present here a method similar to the one presented in — ()= —— L , (A23)
Ref.[55]: the complex eigenvalues are deduced from the real dt tr(&Tllat)[)\gll)(t) 1]

eigenvalues by an analytic continuation. However, our
method differs from the one presented in H&5] since we Wherefl'lla)\ is given by substituting the numbers; for

make variation in the phase of the numbexs instead of ~ . ~ . :
their imaginary part. We think that it is better to make varia- v1;(1) in Egs. (A16) and (A17), and 4T, /4t is determined

tion in the phase since, from that we have observed, it leavedMilarly. Finally, the obtained estimates of numbgfS'(1)

invariant the generalization to the complex case are used to initiate any of the classical methods for the nu-
merical solution of equationgs5]. Then, one obtains the
Re(N, )=ReN, o) --=Re(\, p)--- (A20)  desired complex eigenvalues.
In order to eliminate the numerical instabilities, one has to
of numbering(37). multiply each matrixT,; and their derivatives by the num-
We define for allt in [0,1] the functions bersNj (A18) as in Sec. A2.
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4. Numerical determination of the eigenfunctions
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N, . The coefficientsF{ and FJ are deduced from EqgA8)

From Eg.(All), the expression of each eigenfunction and(A25) and then one can obtain the other coefficients for

(1)
bp,

Fp,(X15), 1= ..J. On the numerical side, the only

difficulty comes from the fact that numerical instabilities in

the expression of the transfer matriog@s’b) and (A7c). A
solution based on thdR-matrix algorithm (or S-matrix)
should consist in using the algorithm presented in [R26]
to obtain the vectorF, (x;0 [and the vectorF, (x; )
=exp(dmk)F, (x,,0] and then, the algorithm presented in
Ref. [31 Sec. V| to obtain the vectorsF p(X1), ]
=1,2,.
tion that benefits from the fact that we deal witk2 ma-

trices.
We define the following complex coefficients:

T 71'12__T N D) Ty
Thy Ty 0w Term e Tais,),
(A243a)
7'111 lez_ ) (1) )
7 szz_:Tlvj()\pl)lel-*l()\pl)'"Tl,l()\pl)r
(A24b)
F _
F =Fp,(X1p), 1=01,....7 (A240)

SinceF, (x1,0 is an eigenvector of the matrrkl()\f,ll)) as-
sociated with the eigenvalue expfX,), its coefficients sat-
isfy

TIN- exq2| Tk)N

Fy=- F2,

(A25)

where the number§y,\V and 7{,\ are obtained by multi-
plying each coefficient of matriceB;;(\ (") by the number

is glven by the coefficients of the column vectorsi=1.2,.

j_

i+1 j
7122 7'11N

}'J
v 7_121 T11N+ T217—1

. F
FIT ==,
LN h

7

i1
T

Fi— T 7'22/\/
27 41 +1
T N+ b, TN

. (A26)

722

. J—1. However, we propose to use another solu-Where, as in Eq(A25), the multiplication by the numbek’

consists in multiplying each coefficient of matnc't'aﬁ()\fjll))
by the numberV; .

Finally, we have to normalize these functions in order to
obtain relation(33). From the definition of the inner product
(17), we have to compute

SN2 = f |¢<l><x1>|2v1<x1>dx1, (A27)
,1 0

when the functiong andu have property(2). In the general
case(wheree andu are complex valued functiojjsone has
to use the formalism presented in RE26] [Sec. 2.3. It is
possible to compute analytically expressi@®7):

J

21

—ﬁ;jzRe(ifa‘lfiz‘l—i?&f"z).

Wl,j L _ _ .
| 65201% = V—ﬂ(lﬂ Y2 v A FY P

(A28)

This expression allows to eliminate the numerical instabili-
ties that can occur from the exponential functions. Note that
all the coefficients of matrices defined in Sec. Ill[Egs.
(39), (40), and (46)] can be also computed analytically in
order to eliminate the numerical instabilities.
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